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ABSTRACT

Cylinder with a wedge and a coaxial shell with an axial slot make up the
antenna. A stationary expression for the admittance is obtained when the antenna
is enclosed by a plasma sheath., The basis of the admittance calculation is the
electric field of the wedge aperture derived from a solution of two coupled inte-
gral equations. The calculations are carried out for the parameter ranges: The
radii of the cylinder and shell are, in wavelength, from 0.05/7 to 2/r and from
0.055/m to 2.2/, respectively. The plasma sheath thickness is from 0 to
2.5/m. The plasma frequency to signal frequency ratio, wp/w, is from 0 to 5.
Collision frequency to signal frequency ratio, v/w, is 0; 0.01; 0.1, and 0,5, The
angular width of the wedge slot and the shell slot are the same and equal to 0, 06
radians. The results indicate; For wp/w > 1, conductance and susceptance depend
weakly on the plasma sheath thickness. For wp /w > 1 and v/w =0, conductance
decreases exponentially when either the sheath thickness or wp/w increases. Sus-
ceptance depends primarily on wp/w and inappreciably on the sheath thickness.
An increase of v/w increases the conductance but modifies the susceptance only
slightly. The coaxial slotted shell behaves as an ideal voltage transformer in

the equivalent antenna circuit.
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CHAPTER I

INTRODUCTION

1. Survey oi Previous Work:

In the course of re-entry, a space vehicle travels through the upper
atmosphere with hypersonic speed, thus a highly ionized non-uniform plasma
layer is generated. This plasma layer encloses the body of the vehicle,
therefore it tends to block the radio contact between the vehicle and the out-
side stations. In the last few years, this problem has attracted the
attention of a number of investigators.

Hodara (1963) calculated the radiation pattern of a slot on an infinitely
conducting plane covered with a homogeneous, but anisotropic plasma layer.
In his approach, he first assumed a reasonable aperture field and then
obtained the far field. He did not consider the slot admittance. To obtain
the slot admittance, one has to know the field in the slot much more accurate-
ly than is required for the far field calculations. Galejs {1963) considered
a slot on an infinitely conducting plane, backed by a rectangular cavity and
excited by a current generator. He formulated a stationary expression for
the slot admittance. In his more recent papers (1964, 1965a, 1965b), he
applied the same technique to evaluate the slot admittance when the conduct-
ing plane is covered with a homogeneous plasma layer. A.T. Villeneuve
(1965) considered a problem which involves a rectangular waveguide term-
inated on an infinitely conducting plane coated with a plasma layer. He
employed the reaction concept to derive a stationary form for the terminal
admittance of the waveguide. Both Galejs and Villeneuve limited their
calculation to the case of signal frequency w greater than plasma frequency

w_.
p



Unless the aperture size and free space wavelength are much smaller
than the size of the vehicle, we could not use the plane geometry to approx-
imate the surface of the vehicle; otherwise a geometry closer to reality
should be considered. Some authors choose to consider the circular
cylindrical geometry. A typical geometrical configuration is shown in

Fig. 1-1

Plasma Layer

FIG. 1-1: CROSS-SECTION OF A TYPICAL SLOTTED CYLINDER
WITH A PLASMA SHEATH.,

where the slot A may be either axial slot or circumferencial slot. The existing
work for the above configuration almost entirely is concerned with evaluating the
radiation pattern of the slot when the plasma layer is assumed to be of the
following:

(a) homogeneous and isotropic (Knop 1961, Sengupta 1964)

(b) homogeneous and anisotropic (Chen and Cheng, 1965)

(c) isotropic but inhomogeneous (Rusch 1964, Swift 1964, Taylor 1961)




The last case is of particular interest to us. Rusch and Swift assumed that
the density of plasma varies continuously according to a specified function
of the radial variable r. Taylor (Rotman and Meltz, 1961) considered the
plasma sheath to be stepwise inhomogeneous. The inner step is very thin
and highly overdense in comparison with the wavelength. Therefore he
regarded this sublayer as metal-like sheet. This metal-like sheet is then
followed by a comparatively thick dielectric-like subiayer. To preventa
short circuit on the antenna, a dielectric layer is placed between the metal
surface of the vehicle and the metal-like sublayer. He also pointed out that
the radio communication blackout is due to the metal-like sublayer.

Olte (1965) in a recent paper considered a conducting cylinder enclosed
by a slotted coaxial metal shell with an axial slot which represents the metal -
like plasma sheath, The electromagnetic field is excited by an axial magnetic
line source on the cylinder (Fig. 1-2). He calculated the power radiated
through the shell for different combinations of the cylinder size, shell size,

and the separation angle 6 between the line source A and the shell slot.

Perfectly Con- .\
ducting Shell _\ \
- 0

-
\\~~~ }
e
/ \7-¢0

Perfectly Conducting
Cylinder

FIG. 1-2: RELATIVE POSITION OF SHELL SLOT AND MAGNETIC
LINE SOURCE.




2. Problem to be Investigated

Although the radiation problem of a slot on a cylinder with a plasma
sheath has been treated by many authors, few of them have been concerned
with the admittance. The prime purpose of this report is to partly fill this

gap. The geometrical configuration we consider is shown below:

Space

Plasma
Layer

Perfectly conducting
shell with a slot

Perfectly conducting
cylinder with a wedge

Coaxial Region

FIG. 1-3: CROSS-SECTION OF A WEDGED CYLINDER, SLOTTED
SHELL, AND PLASMA SHEATH.

where A is a circular cylinder with a wedge of width 290 , B 18 a dielectric
with “r =1, er =1, C is a uniform dielectric-like plasma layer, D is the
free space region, E is a circular conducting shell with an axial slot, a, b,
and ¢ are the radii of the cylinder, circular shell and the outer boundary of

the plasma layer respectively, 6 represents the center to center angle between
the shell slot and the wedge slot. If we assume a magnetic line source at the

apex of the wedge, then the electromagnetic energy radiated from the line




source is guided by the wedge to the coaxial region and then through the shell
slot and the plasma sheath to the free space. Therefore we may regard the
wedge as the antenna feeding line and we proceed to calculate the terminal

admittance of the wedge waveguide.

3. Outline of the Report

In the next chapter, we first assume the source strength to be Vo
volts and then write down the fields in the form of infinite series for the
wedge guide, the coaxial region, the plasma, and the free space. From the
continuity of the tangential electromagnetic fields in the two apertures, we
formulate two coupled integral equations with f-directed electric field in the
wedge aperture and shell slot as the unknown functions. From these
expressions we formulate the terminal admittance of the wedge waveguide
which is proved to be stationary with respect to the variations of the wedge
aperture field. In chapter Il and chapter IV, we present the methods and
the solutions of the coupled integral equations. Upon employing these sol -
utions, we obtain in chapter V the explicit expressions for the voltages of
the two slots and the terminal admittance of the wedge waveguide when both
slots are narrow. Parallel to the stationary formulation of the terminal
admittance of the wedge waveguide, in chapter VI, we formulate this
admittance in an alternate form. This new formulation is not stationary,
but provides a basis for the discussion of the contribution of different regions
to the terminal admittance. From this formulation, we construct an equiva-
lent circuit. In chapter VII, we present the numerical values of the terminal
conductance and terminal susceptances computed from the expression of the
admittance obtained in chapter V. Finally, we draw some brief conclusions
for ihis report.

In order to maintain the main sequence of thought, we leave some of

the detailed derivations to the apendices A-1 through A-10.




CHAPTER II

INTEGRAL EQUATIONS AND THE TERMINAL
ADMITTANCE OF THE WEDGE WAVEGUIDE

1. Introduction:

The geometrical configuration which we choose to consider suggests
us to employ the cylindrical coordinates, of which the z-axis is aligned with
the axis of the cylinder and f is measured in a counter-clockwise direction
from the center of the slot of the shell. Because the antenna is excited by

an axial magnetic line source, only the following field components exist:
Hz axial magnetic field,
E¢ circumferencial electric field,
Er radial electric field.
By superscripts I, II, I and IV, we will denote the wedge waveguide,
the coaxial region, the plasma sheath, and the free space, respectively.
Since tangential electromagnetic field must be continuous across the wedge-

guide aperture, the shell slot, and the tangential electric field must vanish

on the perfectly conducting cylindrical walls one obtains at r = a :

I IO _ A o g o -1-
E¢-E¢ E(f) ;6 eo\yz§<e+e0 (2-1-1)
EH=0~ 6+6 <P (2r+6-6) (2-1-2)
¢ ? 0\ ~ 0

I I L
HZ—HZ,960<¢<6+60, (2-1-3)



atr=b:
I m
Eg=EgTE@D; -, <P <h (2-1-4)
=0; |¢l> ¢0 (2-1-5)
o_ I _ 1o
HZ_HZ s ¢0<¢<¢0’ (216)
atr=c¢:
EH;=EI; s mrgpgr (2-1-7)
Hm=HIV HEEE X x2S (2-1-8)
z z

In the last part of this chapter we use the forgoing relations to formulate two
coupled integral equations with the wedge guide aperture field ﬁ(ﬂ) and the
shell slot field E (@) as the unknown functions.

One may consider the wedge guide as a transmission line with TEM
wave as the transmission mode. We consider a section of wedged-waveguide
of length L, in which the transmission line voltage and current are governed

by the following equations (Montgomery, 1948)

4D Lk 2,0 10 (2-1-9)

d Igr!

ir - j ko Y, (1) Vi (r) (2-1-10)

where

Yo(r) = il —_ (2-1-11)




The positive directions for the current and voltage are shown in
Fig. 2-1

FIG. 2-1: POSITIVE VOLTAGE AND CURRENT OF WEDGE
GUIDE

The solution of differential equations (2-1-9) and (2-1-10) are easily
obtained as

I(r) = - [A'H(g) (ko r)+ B H(cl)) (k0 r)] (2-1-12)

1 (2 e N
V(r) = jYO(r) l:AHO (kor)+BH0 (kor):‘ (2-1-13)

where the primes indicate the derivatives of the Hankel function. If one

defines the normalized admittance at a cross-section r as

y(r) = V5 Y0 (2-1-14)




9

then from previous two equations one obtains

A (

(kor) + BH 1)(k )

y(xr) = j ;
AE? )+ B'H‘(l,) ()

(2-1-15)

The normalized terminal admittance of the wedge waveguide is y(a). Thus our

nrohlem is to find the constants A' and B'.

2. Field Expressions:

The field expressions (Stratton, 1941) in the wedge waveguide are

I_ (2) (1
Hz—ko{ oo (k r)+BOH 0(kor)+ilA J (k 1) Cco8 0(¢ 9+9)}

260
(2-2-1)
EI = juM \ (z)l(k )+ B H(l) (k.r) + 3 A' J! (k r)cosﬂ—(¢-6+6)
9)]0k0 070 70" &"n"n7 0 26, o("’
260
(2-2-2)
1 W &
E = — A J (k r) sm— (p- 9+6) . (2-2-3)
T r 26
n=1 0 29 0
0
If we let V(r) be the voltage between the walls of the wedge, then
+90 .
V(r) = - rEpdp . (2-2-4)
9-90

(2-2-2) in (2-2-4), we obtain

n
o
o
Prbe
3
UQ

~

V() = - jun k726, [AOH((z)) (o) + BOH((I)) (k r)] . (2-2-5)
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1 1
One may specify the value of AO’ or BO’ or their linear combination. We

choose to specify the voltage at the apex of wedge, i.e. to fix the strength

of the magnetic line source. Let

: . b (2)! ' :I _
lim { qu0k0r260[A0H0 (kor)+BO Ho (kor) —VO. (2-2-6)
r—0
After taking the limit, the result is
- B, "o (2-2-7)
A -B =- ————— 2-2-7
0 0 400wu0
In the coaxial region:
n=0
o 2 -jnf _
H =k D, [A 3 (kn+B N (ke , (2-2-9
n= -m
n=o
I . 1 1 _jn¢
Eg = Juig kg Z[An J (kyx) +B_N_(k,v)]e , (2-2-9)
n=-o
Wi n=®
on__ "0 -jnp o
E =-— > nl:Aan (k) + B N_ (kor)]e . (2-2-10)
= -
In the plasma sheath:
n=o0o
11 -jnf
Ho =k, 2 [D 3 (kn+E N (k1)e (2-2-11)

n=-0
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n=o

m_ . ‘ ' ! :I -jnp

E'S = joug Ky E E)an(klr)+EnNn(k1r) o (2-2-12)
= -0

op D=
I 0 Z l: ' ] -jnf
= - + -2-
E v - n Dn Jn (klr) En Nn (klr) e (2-2-13)
n= -
where

k1= =Ek0 . (2-2-14)
If we let
E=kr—jki (2-2-15)
then
w W w
2 P12 P2 1/2 y1/2
1 (_wR) 1 (w) 2 (w) v .2
k=13 0-——=)+5 |(1- 5 )+ ( 7 )
1+(%) 1+(%) 1+ (%)
(&) W
(2-2-16)
“p.2 “p 2 “p \2
)1 (_wp) ° (w) 1/21/2 1 (w) 1/2
=z L4 2) T ) "2t 3)
1+(5) 1+ () 1+ (%)
(2-2-17)
In the free space:
n=qa
Hn;=k§ E c H(i)(kor) L , (2-2-18)

n=-a
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n=q0o
“’;-jwuoo E c_ H(z) & e i®?
n=-0m
on. BE2
V-2 H2 e jnf
Ir T
= -0

3. Formulation of the integral equations

(2-2-19)

(2-2-20)

Upon substituting the required E, expansions in the boundary conditions

atr=a, r=b and r=c, i.e. in(2-1-1), (2-1-4) and (2-1-7) respectively,

one obtains

jwuoko{ . ((2)) (ky a) + B H (1) (kq )+ZA 3 (kja) cos 0(¢ -0+6 }=ﬁ(p),

20, 60

n=0o
1 [} -jnﬁ _
Jum kg Z (A J (k2 +B N (ka))e P = 8(9)

n=-w
n=qa
1 ' -jn¢=
Jung kg Z (A J (kb +B N (kb)e E(f)

==

n=aao

Jumgk, Z (D_J_(k b) + E_N_(k b)) L

n=-0

(2-3-1)

(2-3-2)

(2-3-3)

(2-3-9
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and
n=ao
TR E (D J (k. A+E N (k cpe 0P
JWkg Ky nIn K +HE N (k ce
n=-om
n=a
ciws k. 8o uD'y g mind -3-
Jwraono 4 “nn \--0‘3, e - (2 3-5)
n=-ow

Applying the orthogonality of the circular functions to eqns. (2-3-1)
through (2-3-5), there results:

+0

0
'(2)! v _ 1 " gét -3-
AgHG (k@) +BUH ) (ega) = g 891 ag (2-3-6)
0700
6 -6
0
6+0
- " £ cosRL (g1 -0+a)0p
A' =- - E(@') cos=— (p'-6+6_)dp' :
n JGOqukOJH(kOa) o6 290 0
290 0
n>1, (2-3-17)
+90
1 1 1 ﬁ . jn¢| .
S S 2-3-8
Aan(kOa)+BnNn(koa) ZTonk (" e ag' , (2-3-8)
00
6-6
0
0
P N CIPNeY
B N (kb)=-—"7"—— E(d" e df . 2-3-9)
A dpligh * By N tipbs j2mou,k, ‘\ e Tl (
-f
0
0
1 1 1 jn¢'
SN S E(f' ap' , 2-3-10)
Dan(klb)+EnNn(k1 b) j2rwu k (¢) ¢ ¢ (
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and

1 t (2)!
+ = -3-
E(Dan(klc) EnNn(klc)) Cn Hn (koc) (2-3-11)
Combining Egs. (2-2-7) with (2-3-6), (2-3-8) with (2-3-9), and (2-3-10)
with (2-3-11), one has three sets of two variable simultaneous algebraic

equations. Their solutions are

. LA H( b '(koa) 1 ! +60A
Ao” “Bowm. " T gk, E(p) dg' .
07’0 J0 (koa) 0 0 Jo(koa) 9—60
(2-3-12)
. 7rV0 H((z))'(koa) 1 | +90ﬁ 5 af
B, = - (p" dp' , (2-3-13)
0 86 ,wu ! 4j0 wu !
0% 3, (k@ 0%0% 3 (e Y, 6
1 1 1
A = 0 (N (k. .a) p -N (k_b) qn) , (2-3-14)
n ! ! ' n 0 n n O
Jn (kob) Nn(koa) - Jn(koa) Nn(kob)
1 1 1
B = (-J (k.a)p +J (kb)qn),
n ! ! ! ! n' 0 n n O
J (kbIN_(kja) - J (ka)N (kb (2-3-15)
1 [ (2) 1 '
D - c 1?2 (k o) N (k. b) -p N(kc)]
n - 1 1 1 1 n 0 n 1 n n 1
k [Jn(klc) N (k lb) -3 (klb) Nn(koci\

(2-3-16)
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1

where

Ao

p ——— E(pl) ej!!ﬂ' dpl
n ijwuoko 3
_po
0
1 A jng!
T | e ap
Ho%o 9_90

E[Jn (k1°) N n(klb) - Jn (klb) N (klc)]

(2)! 1 1
[- C H Y (k& d (kb +p_ Jn(klc)]

(2-3-17)

(2-3-19)

We substitute the required Hz expansions in (2-1-3), (2-1-6) and (2-1-8) the magnetic

boundary conditions at r =a, r = h and r = ¢ respectively, and obtain

(2-3-20)

(2)(k a) + B H(I) (k a) +ZA Jn,(koa) cos -1~ (¢ -0+86 )
n=1 26

n=o0o

_ -jnp

- Z (A 7 (k@) +B N (ko)) e ,
=-m

6-6, <P 6+6,

n=qa

Z(A I (kg +B_N (kb)) e -inf _ 2 Z(D 3 (kp) + BN (k, b))ej“’zj

n=-0o

'¢0<¢<¢0 ’

n=-0

(2-3-21)
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and

2Z(D I (k,@+E_N (ko) e 2P Zc 10 e

=~

-r<psTr . (2-3-22)

Upon using (2-3-22) we eliminate Cu in the expressions for Dn and En , and

obtain
EI:N (k c) H(zlk c) - EH(Z) (k ¢) N (k c)]
D 1
n IEH(Z) (k c)[:J (k AN (k b) -J (k DN (k c):l a‘z " c)[J (k N (k p)-J. 'k b)N(k b]
(2-3-23)
[J k0 1P e 0) - 12 (e o) 7 G c>]p
E=

L) (%c)Er (k N (k b)-J (k PN (k c)] H(z)(k c)EI (k ON (k -1 (k PN (k cﬂ
(2-3-24)

If we substitute (2-3-14), (2-3-15), (2-3-23) and (2-3-24) in (2-3-21), we have

n=co !
Jn(kob).N (koa) -N (k b)Jn(koa) ; e-jn¢
n

n=-00 Jn(kOb) Nn(koa) - Jn(koa)N (kOb)

n

b) - J (k- b) N (k_b)

3 -jnp
0 qne"jnpg Z "npne

(kob) n=-w

(k bIN (k

0
(k b)N (k

0

(koa) N

S |-

n
t

IS—'J
B_ =B

o® -

D
D
=]

(2-3-25)
where
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1-1(2)'(1{00)
l}] (klb)N (k C) -J (klc)N (k b)] -k H(z)(ko ) [J (de)Nn(klc) -Jn(klc)Nn(]ﬁb)]
T= k .
. H( (kOC)
[J(lﬁc)N (l&b) ~J (klb)N (k cﬂ H(z), [J (lﬁc)N (lib) -J (klb)N (klc)]
(k)
(2-3-26)
Substituting (2-3-18) , (2-3-19),and the identity
1 t 2
Jn(kob)Nn(kob) - Jn(kob)Nn(kob) = ‘;‘ko—b (2-3-27)

in (2-3 -25) we obtain

0

n=0o !
Z(” (k c) Jn(kob)Nn(kOa) (k b)J (k a) 0 E(¢I) e_jn(p_p,)dp‘

‘2"(k E T 0PN (@) -3 (k N (kb
-¢0
+6,
-jn(p-g)
= E(¢')e dg'
KR bZJ (kDN (k) - (k @IN (e ) f o
0
< B < 1,

(2-3-28)
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Upon interchanging the summation with integration on the left-hand
«ide, one obtains

He®) 3 (N (k p)- I (k aIN (kb
E(¢') Z( J (kPN (ikp)- J (koa N (k >e'1“(¢'¢')d¢-
).

() 2 g o a (kdo)N (koa) -3 (koa)N (k b

+0

0 '
- 1rk b Bugne PP
> Tk PN (koa) -3 N (kP Y, o
0
- ¢0 <p< po . (2-3-29)

We then substitute (2-3-7) and (2-3-12) through (2-3-15) in (2-3-20),
rearrange terms, and using the Wronskian of the Hankel functions

Y k2 100 - 10 o) 1P = AL
T koa

arrive at
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1 Y
: 1
2j6qumgky  ad) (koa)

Jn1r (kOa) 0+0

1 0 nw 0

+ —= (-
2j‘60wu0 k, “; o (kna)cos 26, # 9+60)

'Ea_o ~o -Uo

M | P 1
E(f"cos 26, ('-6+6,)dp

1 n= Nn(kOb)Jn(kOa) -J (k b)Nn(k

T 27w 4 ' '
% nf 3 (kN (koa) - 3 (i)

0

- B

Oa) 64'90 _jn(p ¢')
: E(p) PP ggr
2N (kb) b6,

= g
2 = 0 e (bt
n=-o Jn(kob)Nn(koa) - Jn(k Oa)Nn(kob) ) po

6-6,<p<0+6 . (2-3-30)

where € =1forn=0and2forn# 0. We note that in (2-3-29) and on the
right handside of (2-3-30) the series are summed on n from - to o . If

we employ the relations

"

Z ) = ¥ z_ ()

z!(r) = (-0° 2 ()

where Zn(r) and Z;l(r) denote the cylindrical function and its derivative;
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one may simplify (2-3-29) and (2-3-30) respectively to

Heo)  J (k )N (i) - 3 (k pIN (K b)
\“o E(p )Ze (r 1—1(2) i ¢ o n ¢ )cos n (f-p") dp
) (ko) J (kob)N (koa) - J(koa)N (kdo)

b n=0
o € +60
- ;_122._ : n E(¢')cosn(¢-¢') ag* ,
P =T Tl N (k) -3 (k@) N (k p) o,
f<p<h (2-3-31)
and
er (koa) ‘o
m 290 0
Z:o € 7 Tk ?0826 (p-0+6 )SH E(¢') cos ;- (¢' 9+6)d¢'
—2;(; 9-90

1 ] +6
) J (k 2N (k b) -J (k b)N (k a) 0
+_0. ff l: ¢ n' 0 n' 0 n' 0 Sa /E\l(¢')cosn(¢-¢')d¢'

= n -
6=0 "3 (k BN (ka) -3 (k)N (kb J,_ 0,

v ®
) __ag Trka 70 Z S$ E(p")cos n(p-")p"

J (k a) J (kob)N(kOa) -Jd (koa)N(k(}))

6 -6, < P < 6+6, . (2-3-32)
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Equations (2-3-31) and (2-3-32) are dual integral equations. Thus
the boundary value problem is reduced to the dual integral equations. In
chapter III, we regard E (") as a known quantity and solve integral equation
(2-3-31). Then we insert this result in (2-3-32) to eliminate E(f§'). An
approximate solution for ﬁ(ﬁ‘) is obtained for narrow wedge and narrow shell

uations will be studied respec-

— i

slot. The kerneis of ihe iast iwo integral ¢
tively in chapter III and chapter IV; it is shown that these kernels have a
logarithmic singularity when §'— § .

-‘2

4. Terminal Admittance of the Wedge Waveguide
Using (2-3-6), the first two terms on the left hand side of (2-3-20) can

be written as

H(Z)(k )+ H(l(k) *%
Ag S 2 + B H ) =5 1“ i k S0\ B,
oko AOH( (koa)+B0H (koa) 06
0
but
A, (2)(k a)+B0H((1)(k0a) @
PR RN L
and therefore
(3+e
"2 (1) _ N gé -
A (koannon o = - 2‘0“’“0 y(a) ﬁ(gb) ag' . (2-4-~1)

9-60
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Upon substituting (2-4-1) in (2-3-20), we have

T 20 wu

+9
ko y(a)gﬂ E(¢)d¢+ ZA J koa)cos (¢-6+6)
6

070
-60 n=1 290
n=o
. -jnf -4~
—Z (Aan(kOa)+BnNn(k(P))e . (2-4-2)
n=-00

If one inserts (2-3-7), (2-3-14) and (2-3-15) into the last expression, one

obtains
J (k_a)
nr 0
9+90 29 nx +€0
y(a) E(jb') ag = 2 Z (k a) 08290 (¢-0+90) E(¢')cos 6, (¢-9-0 )"
9-00 n= 1 _or 9-60
29
6 = N '(kob)J (ky®) -3 '(kob)N (k) *% ,
) e R B(pcos n (-1 op
n=0  TnloPNplkg®) ~ T ko@IN (ko Jg_g
90 2 = €n ¢0
--1— ﬂl(an 1 1 ] 1 E(¢') cosn(¢—¢')d¢' .
n=0 Jn(kOb)Nn(koa ) -Jn(kOa )Nn(kOb ) )

(2-4-3)
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Multiplying (2-4-3) by £(@) dp and integrating from 6 -6, to §+6, , we have

%

+9,
Q0 2
v(a) i‘:(p)dp) Z[ (ko) / (koa:|[ ﬁ(y»cos Z (p-0+6 )df{l
az 29
26

() -90 o 2 90 0 -60

1) +0 +6,

J(k)N(k)J(k)N(k) 0 0
+J—Z PN -3 0PN A

ag £(g) E(p") cos n(g-#") dp"
J (k(}))N (koa) -dJd (koa)N (k&)) 0 9+90

™ +9
90 €n 0

-i— d¢ﬁ(¢) E(p)cosn(p-g" dp' .
(kd))N (kd:l) -d (koa)N (kob) 0 _¢0

n=0 n
(2-4-4)
One may note from (2-1-14) and (2-1-15) that y(a) is a dimensionless quantity.

If the value of the terminal admittance Y(a) of the wedge waveguide is of
interest, then by virtue of (2-1-11) and (2-1-14), we have

'e ‘
L 0
Y(a) = — y(a) - (2-4-5)
290a “0

In A-1, assuming the solution of integral equation (2-3-31) is obtainable,

the stationary property of (2-4-4) with respect to a small variation of £ P is
established. Thus in order to use (2-4-5) to calculate the terminal admittance

Y(a) , one needs to solve first the integral equation (2-3-31).




CHAPTER III
SOLUTION OF INTEGRAL EQUATIONS (2-3-31)

1. Introduction
The f-directed electric field in the shell slot E(f) may be considered

as the sum of Ee(ﬂ) and EO(¢) , respectively, symmetric and antisymmetric
part with regardto § =0  (Olte, 1965).

Since

b
Ee(ﬁ) sinnpdp = 0
*
and
b
E0(¢) cosnfdp = 0
L

One may split (2-3-31) into two integral equations:

b 2 H(ilkoc) T (k ) N[:(koa) - Jl:(koa) N (k )
Ee(ﬂ') a nH‘Z). - : : . cos nficos nfi* df'
"¢0 n=0 a (koc) Jn(kob ) Nn(kda ) - Jn(kOa)Nn(k(P )
o 0+ 90
= - ,kzobZ; ——cos@d £(p) cos nf* ap'
=0 PN (k) -Jn(koa)Nn(kOb) 6 -6,

(3-1-1)

24
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- - n ; sinn@ sin np' dg*
H(z)(k c')

; i H(z)(k o) Jn(k&))Nr'l(koa) -J;(koa)Nn(kob)
("
EO J n(kob) Nﬁ(koa) -J n(koa) Nn(kda)

p9 +9n
1rk b Z s E(p"sinng' g
J(kb)N(ka) J(ka)N(kb) 0 -0
0
(3-1-2)
For large value of n, one finds
122"
1+ C E2
(2)(k o kg 1+(%)2n .
r 20 o 0 K (3-1-3)
n H(Z)'(k 9 n i _(2)2n
n 0 E2 + C
b,2n
1+(>)
c
and
! a.2n
Jn(kob)Nn(koa) -J (koa)N (kob) _ kob 1+(=— ) . (314
! ! ~ n 3 2n T
Jn(kob)Nn(kOa) -Jn(koa)Nn(kob) 1-( |O)
Asn - w
(2) ' '
] H (koc) J (k DIN (kja) - J (kN (k b) . li (1+k -
n 2)! 1 1 ! ! n
H2' (k@) 3 (kN (e -3 (c @IN (e b)
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Thus if we define

(2) 1 '
O(ROC) Jo(kob)NO(koa) - Jo(koa)NO(kob)

0 = '0 2)! T 1 1 '
H (k) Jofk DN (k@) - 3 (e aIN (kb

H

T (3-1-5)

(2) 1 1
) H n(koc) Jn(kob)Nn(koa) - Jn(koa)Nn(kob) _2) kob
™ " 2! - T 1 1 1 tl+k n
H‘n (koc) Jn(kob)Nn(kOa) - Jn(koa)Nn(kob)

1 1 2) 2y

- k0b {].(2 I-:In-l(klb) Nn(klc) _Jn( klc) Nn-l(klb].ﬂ(p (k()c) & I‘l‘n (kOC)ETn-l(klb) Nn(klc) _Nn-l(lﬁb»{x(l&c]
- 2)' 1 ] 2) 1 1 1 t

a kﬂ(n (koc)[Jn(klc) N(lcb)- n(l&b)Nn(klc)] —H(n(lbc)EI (kN (Icb) -Jn(l&b)Nn(klc;J

Jn+1 0 n
] 1 1 1]
Jn(kob)Nn(kOa) - Jn(koa)Nn(kob)

(k b)N e(k a) - J'(k a)N_ _(k_b)
0 n 0 n+tl" 0 } (3-1-6)

then the series which represents the kernels of integral equations (3-1-1) and
(3-1-2)respectively become

o (2) 1 1
) <H ) (koc) ) Jn(kob)Nn(koa) -Jn(koa)Nn(kob)>cos oo
n 7’n (z)t ] ] t
n n

B2 (k,®) T (k bIN (k8 - J;(koa)Nn(kob

n=0 0 0

® ®
=Ze T_cos nf) cos n" -2(1+E%k0bzmﬁﬂlﬂ’ (3-1-7)

nn
n=0 n=1
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® (2) ' '
H u(koc) Jn(kob)Nn(koa) - Jn(koa)Nn(kob) '
T 1-1(2)' - = : . ; sin nf sin nf

n=1 > By (k0 J (kPN (ka) -J (ka)N (kb

®
B -2(1+FA L bv sin nf sin nf"
" ' " T0 bmnr n

n=1 n=1

From (3-1-3) and (3-1-4), it is easily found that asn — o

12k o) k b (2)%0

n' 0 =20 2 c
T + k —» 2k"k b
n H(z)'(k c) n 0

n 0
and
J (K BN (k a) - J (k.a)N (k.b) (220
n 0 " n0 n0 n 0 » 2k b b

[} 1 4

t 1 0
I (kgDIN (ko) - J (k a)N (kb)

Therefore the series
™
2. |
n=1

converges, and thus

o8}
[

1
L €, Ty CO8 nf cos nf

=0

(0 ]

Z 7, sinnf sin nf'

=1

(3-1-8)



28

converge uniformly in the region -, < p, ¢' < ¢0 .

Hence if one replaces the infinite series with the finite sums

N
Z € T, C08 nf) cos nf’ ,
n=0

N
Z 7 8in nf sinnf’

n=1

then the error over the square region - ¢0 <P, P < ¢0 is less than a constant,
independent of (p , #" .
Upon substituting (3-1-7) and (3-1-8) in (3-1-1) and (3-1-2) respectively

and replacing the uniformly convergent series by their finite sum, we obtain

¢0 o N

Ee(¢'){Z cos nf ﬁos o' Ez) Ze T cos nf cos np} dap’
_po =1 2+ kp

(k b) *%

— el Rprcosngrap: .
e Jn(kob) Nl <3 @ N k) g o
(3-1-9)

¢0 ) N

Fo(¢') {Z sin nﬂ:in nf! - -21) Z,Tn sin n¢ sin n¢|} d¢'
_po — (1+k kob n=1

o4} +0

0
- Z sin n[b /}E\:(¢')sinn¢'d¢'
1(1+122> (e 53 T e PIN (k@) - 3 (k@ (kb 0,

(3-1-10)
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These are the two integral equations to be solved in this chapter.

2. Noble's Scheme

In this section, we reproduce a scheme due to Noble (Langer, 1962) to

solve an integral equation of the form

';'(M_] ad = G(d) | (3-2-1)

If one knew the solutions of the auxiliary integral equations

F(PV K(P, " dp* = G(f) (3-2-2)
A
and
fPVKP, p) df* =y (F), n=0,1,2... N, (3-2-3)
A

then upon substituting (3-2-3) in (3-2-1), we have

‘N
mg1 kg, prap+) E@0] TTE@N\ 1 @Ks, e |ap - cep .
A A n=0 A
(3-2-4)
Let
o ng E(§) @n(#) ag' . (3-2-5)
A

Then (3-2-4) reduced to

ge[r:(wn o, .87 | K(p §) ag = a(p) (3-2-6)
n=0
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Upon comparing this equation with (3-2-2) we have

N
E@) =F () -) o 1) . (3-2-)

n=0

Multiplying both side of (3-2-7) by ﬁm(ﬂi') and integrating over the
interval A < #' < B, we arrive at

N
Sﬁcbm(p') E($") af" +chrfn(¢') ¢ (g apr =rr(¢v) o _napr .
A A A

n=0

m=0,1,2...N

We let
A L !XBfn(yb') ¢_(pnap! (3-2-8)
A

B =SBF(¢') o, (8" a (3-2-9)
A

then

N

am+ZAmncn=Bm , m=0,1,2,...N . (3-2-10)

n=0

From (3-2-10), we are able to determine o -
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3. Solution of (3-1-9)
Comparing (3-1-9) with (3-2-1), we observe that

E(§) = Ee(ﬁ')

0 1 ]
K(P, ") = cos nfl cos nfl

(3-3-1)
(I’n(¢') =€ 'rncosn¢'
w (p) = - CO8 né
n 2(1 +E2) kob
) ® € cos(nﬂ)f“(e)
G(ﬁ) = t - [ nt '
r(1+ B B 3 (kN (k@) -3 (k @N_(k b)
where
+90
e SB E(@) cosn §'df
9-00
and the auxiliary integral equations are
(e)
gpo F(eb') ﬁ cos nfl cosnﬁ'dp, 3 1 i “n cos(n¢)Pn
0 - n 2 - 1 1 1] 1]
S AR P A0 (e IN (e 2) -3 (k 2N (k )
- po < p < ¢0 s (3-3-2)

and

QO t
(00 f(f)(¢')zwd¢'=——l—z— cosnf,n=0,1,2... N,
J_¢ " n=1 = 2(1+k) kob
0

- {b ¥P< po . (3-3-3)
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These two integral equations can be solved by employing Schwinger's
transformation (Lewin, 1951) which is defined in (A-2-4). For detailed
derivations of the solutions, the reader may refer to A-2; here we only state
the results:

F(e s 3 °°°2 S(g) S ms‘fr)l 1, o %
()= 7 ; 3 cos[mcos (cac™ycosp-cof Nr
1(1+E2)(k6>)¥os¢—cos 47 mcsc 0 m=1l =«

- <B<p . (3-3-4)
1]
cos™> Xon n mX ¢ ¢
fé(m__ /3 { 2m cos|mcos (csc —cosﬁ-cot 2] ,
2(1+k )]<0b£os¢-cos 0 47 lncsc— m=1 T
= ¢0 < p < po . (3-3-5)
where
(e)
ée) - n |“p X@ (3-3-6)

p=0 Jp(kob)Np(kOa) - Jp(koa)Np(kOb)

[00) r-(e?x
- Z R I0p : (3-3-7)
(k b)N (k a) -J (k a)N (k b)

and
T
X = codmécos[p cos_1 (cos2 ?9- + sin2 ¢—ocosé] d (3-3-8)
mp 2 2

-T




33

Therefore the solution of equation (3-1-9) is:

co 2 ) ms®
Ee(¢)= vz "2 é ﬁ -é— cosEncos l(csc -—cos¢-cot2-]

1r(1+E2)(lbb) "’éosﬁhcosﬂo Pincse2 0 m=1
2

X p )
ée)[ on ) +§': 3 xmncos lEncos (csc2 -gcosﬂ—cotz —) .
0

2
41r21ncs 2 m=17

-h<p<p . (3-3-9)

(e)

In the last equation, the coefficients o o, can be determined by solving the

simultaneous equations

SO, 5 (o), (o) _ (e)

=B, m=0,1,2,...N , (3-3-10)
m 423" n " mn m
where
=e T V f( (¢) cosmpdp , (3-3-11)
0
(e) (e)
Bm =€ T F 0 ©°8 mpdp , (3-3-12)
To express A( e) _and B( )explicitly, we substitute (3-3~9 in (3-3-11) and
(3-3-4) in (3-3-12) and obtam
€ T
A9 _mm { e 531
2(1+k )k b 4n? sc-—
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(e) € T S(e)X qS(e)
B e) _ m m 0 om q
™ aw@up? |, 2,  Pfo Yam{ (3314
T 0b 4 1 ncscz—0 q=1 =
4, Solution of (3-1-10)
To start this section, we introduce a transformation
%
w(p) = EO(¢')d¢' (3-4-1)
_¢0

for the odd part of the unknown slot field, Eo(¢) . Since for §' < ¢0 , E(f") behaves

as

then |¢'|—> ¢0 .

+¢0
but is otherwise continuous, therefore the integral E0(¢') dp exists and the

function W(@ is defined at every point inside the closed interval - ¢0 <Pp< ¢0

while its first derivative exists in the corresponding open interval. Thus one has

5o - S5 ® . - <p < g,

Also because E0(¢) is an odd function of § , W(@) is symmetric with respect to §.

One may set

W(-O) =0

and it then follows that

w(po) =0

Thus integrating by parts




%o

s Eo(ﬁ') sinnf' df' = sinnf' W(p")
)

-nS W(f") cos np* g
_¢O

)
.- ns\ WP cosnrdpt (3-4-2)
%,
Let
6+9
o °
r, = B(g" sinng' dp' . (3-4-3)
9—90

Applying (3-4-2) and (3-4-3) to the integral equation (3-1-10), we obtain

po 0] N
S W(¢'){Z sinnf cos nf' - 1 Z n7_sinnf cosnf’ }dﬁ'

'po n=1 (1+'122)k0b n=1

F(0)

[00) sin np
== _2 2 Z 1 1'1 1 1 ) (3-4-4)
T (e ) =1 3 (kPN (k 8) -3 (k )N (K b)

Last equation has the same form as (3-2-1), i.e.,

E(p) = w(p)
K(9, 91 = f sinn@ cosng!
n=1
!ﬁn(ﬁ') = a7 cosnf'
'l/n(m o sxfng
(1+%) (k b)

(0)
§ ' "sinnp

- 9 1 1 1 1 *
r(1+K) (k) A1 3 (k BIN_(k 2) - J Gk @IN (ke h)
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The auxiliary integral equations for (3-4-4) are:

¢ r (0)

0 © Q0 2

S‘ F 0)(¢')§ sinnf cos n@' d¢* =- =3 5

-¢ n=1 7l'(].+k )(kob)
0

5o nf
-t J ;l(kobN;(koa)—J['l(koa)N;(koa) :

- ¢0 < ¢ < ¢0 » (3-4-5)

¢

0 0) 03] 1
£ (@) ) 'sinn@cosn@' dg' = - ——__—2-———sinn¢ ,
. n; (14 & "Nk b)
_¢0 0

By <P<9y - (3-4-6)

We may again apply the Schwinger's transformation to the last two inte-
gral equations and obtain the solutions for Ff)o)(¢) and f(g)(¢). Similar to

last section, we leave the detailed derivations to A-3 and state the results as:

Vo' &2
F(g)(¢) = — cos % ‘vcos¢ -cos ¢0 m2=1a(2’)Um(¢) , —¢0 <@< ¢0 ,

(1+k 2(r kob)2

(3-4-7)

fflO)(¢)=—_-_—2L?———cos‘g-VCos¢-cos¢o ‘; (0) U (¢) , -¢0<¢<¢0
(3-4-8)

where

9. LSy S P enx ) (3-4-9)

m 27rp= 1ppml.p pEme1 p m+l,p '’

- -1
0 _ 1 1
b == - X = odd , 3-4-10
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oL a = even (3-4-10b)
nm 7 p_; 5 m-1,p mtl,p ! ) o
Rt R ]

m-1 _ ) ¢ ¢
Um(¢)=p§ vsp(-l)m p(m--p)cos [pcos 1(cscz—z(-)cc)s;t - cot2 ?0 ] .

Bp<P<9, . (3-4-11)

and

(0)
® r

m

L = : : - : . (3-4-12)
P m=p;1: p+3,. . Jm(kob)Nm(koa) -Jm(koa)Nm(kob)

Thus the solution of integral equation (3-4-4) is

N2  cos 12 o)
w(g) = par 2 3 Vcos @ - cos ¢O a(O)U (1))
(14 ) (e b) = Wl
N n
(0) (0)
+ kb ; o f__'; b U_(§) } . (3-4-13)
D= m=

(0)

In the above expression, the coefficients o o, can be found by solving the

simultaneous equations

N
0(0)+Z‘rA(°’ - g®  m=12...N, (3-4-14)
m 4 "mn m |
where

%
Ao ® I mr_costm 3t %g) g’ (3-4-15)
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B(O) = S m'rmcos(m¢')F(g) (gr)dg' . (3-4-16)

We perform the integrations in Appendix 5, and obtain

¢
A(O) i sini—zg)m'rm

n
(0)
= b '(coslpmX., -X ) , (3-4-17)
mn a +1'<—2)(1rk0b) p; np Om pm
sin2(—¢£)m7
(0) _ 2 m (0) _ 4
B m f ap (cos(p1r)X0m Xpm) . (3-4-18)

(14%2) (wkob)z p=1

The antisymmetric part of the @-directed electric field in the shell slot
can be obtained by differentiating W (@), i.e.,

E0(¢)=%@ N -¢o<¢<¢o .

We carry out the differentiation in Appendix 6, and state that

(0) _ vz—\ sin %

0 (1+l?2)(1rk0b)2 wos¢ - cos ¢0
Po\[ & (0 X (o) <& (0)
cosz(—z—) {g‘; a U (#)+ wkobng o é bnmUm(¢)]

(00]

N n '
+ (1 + cos @) [ a11(10)mvm(¢) + kb Z 0:10) br(x?x:mvm(w] .
a=1 m21=

m=

E

-Po<8<4, . (3-4-19)
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where
m-1 ¢ )

_ -1, 2% 2 Yo

Vm(¢) 1+2 p§=1 cos [p cos (csc Tcos¢ cot” - )] . modd o
(3-4-20)
m-1 ¢ ¢
) -1, 2% 2 %o
= 2 p§= ; cos [p cos (csc —2-—cos¢ - cot -—2—)] , m even

5. Discussion

In the first section of this chapter, we obtained a pair of integral equations
(3-1-9) and (3-1-10) from (3-1-1) and (3-1-2) respectively by truncating the
uniformly convergent series. Therefore (3-3-9) and (3-4-19) are the approximate
solutions of (3-1-1) and (3-1-2), respectively, The accuracy of these approximate
solutions depend largely on the value of N, But N+ 1 and N, respectively, are
the degrees of freedom of the simultaneous systems (3-3-10) and (3-4-14), We
may encounter the usual difficulties of solving a large simultaneous system of
algebraic equations. We attempt to reduce this difficulty here.

Expression (3-3-9) suggests a transformation

z(e) = ﬁ c(e) X (3-5-1)
m n mn °
n=m
Upon substituting this transformation in (3-3-9), one has
cos 2 S(e)

__ Ve 2 0
Ee(¢) T =2 2 g
(1+k )(kob) Vcos¢ - cos¢0 2 0

47 lncsc—z—

(e)
® mS - ¢ ¢
) m coJm cos 1 (csc2 ,,—Ocos¢ - cot2 -——-..,0 )-‘

= ot ? 7
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7k _b N ) g )
+ g [ 1 g z(()e)+n;”%zr(:)co(m cosl(cscz '2£,C°S¢-cot2—§-0))] ’

2
47 Incsc 35

-9,<9<9, . (3-5-2)

If we multiply (3-3-10) by Xpm’ and sum on m, with the knowledge of (3-5-1),
we have
N

(e) Z ‘" Om’ pm (e), 3 1)
z;- === ) zOe :q(z m qm pmzq
812(1+T<2)(k0b)1ncsc-2—0- Tk )k b

S(e)

: [ 0 >
= €e 7 X X
[ -/ m m Om pm
™ (14K )(k b) 4 Incsc 20 m=p

2 - ) =
r Des® T rxx -

T q=1 m =p

Upon multiplying (3-5-3) with the factor R defined as

41r (1+k )k b

Ee'rx
m =

one obtains a new system of equations

] (3'5'4)

S N
(e) Op (e) (e)
Rz - z -4 S 2
p 50 0 ;q apr q
2lncsc — 1
2
S(e) mS(e)
= 0 m o
W Op | 7rk0b mp
zkob!ncsc—z—

p=0,1,2,...N (3-5-5)
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where
N
Z €m'rqum pm
- _m=p -5-

qu N (3-5-6)

€ 7 X

mm Om

m:

Il we express the simultancous system in a form of 2 matrix equation, we

[aqp] . z(e)]= bp] s L p=01,...N . (3-5-7)

where aqp denotes a square matrix of order N+ 1, while z(:)] and bp]
denote the column matrix of the same order. Comparing (3-5-7) with (3-5-5),
we obtain

S

a = RS -—0%— ’
op " 0p 0

21ncscT
a_ =R6 -4qS $0 3-5-8
- - qqp q ( )
where
6qp=1.ifq=p ’

=0, ifop »
and
de) (e)
@ mS
b = 0 5. +8 » . — g
P % Op mé__llwkb mp

0
wkoblncsc >

- (3-5-9)

qu plays an important role in further reducing the matrix equation
(3-5-7). In the following paragraph, we state some of the properties of qu.
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In Appendix 4, we show that forany ¢0 , qu = 0 when q > m.,
Upon employing this property of qu, we may conclude that qu is
symmetric with respect to its subscript index q andp, i.e,,

S =8 . (3-5-10)
qp Pq

a, kb, k.c

We recall that T is defined by (3-1-6). It depends on k0 oPr Ko

1 b,2m a.2m
2k0b < N), 'rmbehaves as — [(—c—) + (=) ]

and k., For m> mo (m B

0

wp 1 1 a,2
f —_——_— 4+ (=
or — # 0 and as [ { -1)+(b) 0

the Tm values are large and may be oscillating in sign. From the (A-4-5)

w
m] for —§=0. For m<k,b,

property of X . which is also explicitly acrounted for as far as the p

subscript is cgrl:cerned in the definition of qu in (3-5-6), we see that as p
increases, the sum making up qu consists of terms involving Tm for which
m > p. But the Tm terms decrease rapidly once m > m, and thus since
|xjk| < 27 we see that qu will decrease rapidly once p > m, . Because
of (3-5-10), the same behavior is exhibited also on the q subscript of qu.
The properties of qu are further modified if we consider the angular width
of the slot 2¢0 . From the discussion in Appendix 4, , it is clear that for
¢0 sufficiently small, there is a number j such that

~ <
XjkO,kmo.

The net effect of this is that the magnitude of qu is further reduced as either
g-subscript or p~-subscript increases.
In view of this discussion as can be seen from Eq. (3-5-8), the matrix
aqp can be reduced in size., We indicate the size of this reduced matrix
by N', Infact, for a very narrow slot, we only need to consider in the matrix

the first element aOO' i,e, N'=0,
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If the slot is very wide, (¢0 =7 - A, Ais very small) then ejxjk: 21r6jk
and qu = ('rq/'ro)ﬁqp, q p=0,1,2,... N. Therefore the matrix o
becomes a diagonal one, i.e., the problem becomes a separable one.

The fact that qu in (3-5-8) is multiplied by q does not change the
order of magnitude of our arguments.

For the odd part of the @-directed electric field E 0({Il) in the slot, given

by (3-4-20), we introduce a iransformation

N
A0 0,0 (3-5-11)
P &4 m mp
Then
1[_‘ (o) ¢
E, (f)= Z; cos® 22U (Brm(1+cosg) v (¢)]
0 (1+k )(7rk b)‘Vcos¢ cos¢0{m m m
+ 7kob Z 0 [cos —U (¢)+ m(1+cos@) vV (¢)] (3-5-12)

where Um(¢) and Vm(¢) are given by (3-4-11) and (3-4-20), respectively,
Upon using the transformation (3-5-11), (3-4-14) can be reduced to a new
simultaneous system of algebraic equations. We express this new system in

a matrix form

[a(;p] . zg” -b;)] , 4, p=12...N (3-5-13)

where Elf'lp] is a square matrix of degree N, z(::)] and b;] are the column
matrix of the same degree. The elements of [a'ql] and br;] are, respectively,

¢
' = R' + 0 - T
20 sin\ " [Togcosqw qq]
a' = sin2(¢—0> (T cosqm-T ) q# (3-5-14)
2/ op 4T " Top ’ P
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and

o
o -
1l
w
(=S
=]
N
RS
o
[
—~
o
~—

[Topcos m7-T (3-5-15)

mp ]

In the above equations, we define

(1+k )(7rk b)
R! (3-5-16)

meT le m1

and
al (0)
Z m7 m qm mp
T - ml:P . (3-5-17)
T mrel)
m 1m ml
m=1

We observe that in (3-5-13) po plays the same role as qu in (3-5-7).
X =0 if q> m, therefore T _ becomes
qm qp

mequbI(fg
o™ m’q ] (3-5-18)

Zlm'r X 1(1?I)

We note that from (3-4-10), fx?le

< m, thus in the numeratsr of (3-5-17) Tm
is at most multiplied by m . But since Tm decreases rapidly for increasing

m when m > m, the Tm behavior will prevail over mz. Therefore the magnitude

of qu will decrease rapidly as either p or q exceeds m. The effect of the

slot width enters into qu in a similar manner as for qu .
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Based on the above discussion, we conclude that |[a' can be reduced in size
for a narrow slot. We denote this reduced size by N". For a very narrow slot,

we may choose N'" =1, i,e.,, we only need to consider the first element a5y .

For a very wide slot, because of the property of Xj K’

[aélp] is thus reduced to a diagonal form,

6. Solution for Narrow Slot

In this section, we shall extract the solutions for the narrow slot from the
general solutions (3-5-2) and (3-5-12), This is a case of some practical im-
portance. In the later chapters, we use these results to attain an approximate
solution for the (-directed electric field in the wedge slot and to have an
explicit form of the terminal admittance of the wedge waveguide.

If the slot width 2 ¢0 is so narrow that we may apply the approximate

relations

~ 2
xop 1 O(N¢0)

. 2
x1p = O(N¢0)

to (3-5-2) and (3-5-12), then we may neglect all terms of order O(N¢§ ). The

results are:
s
E ) = AE) 3 P e, o
e V_——I o 2 0 ’
4 7r3(1 +E2) (kob)zln cse —22- cos § - cos ¢O
-¢0 < ¢ < ¢0 . (3-6'1)
and
Y2’ (a (0)+1rk bz(o)) sin%
E (§) 1 01
0

(1+l€—2) (1rkob)2 ‘Vcos¢ - cos ¢0

¢
. {cos{?o)ul(gtn (1 + cos @) V1(¢)} . -¢0 <@g< ¢0 . (3-6-2)

T = 6 . Matrix
qp qp
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Since U1(¢) = -1, V1(¢) =1, (Egs. (3-4-11) and (3-4-20)) (3-6-2) can be further

reduced to

‘V?(a(lo) + 1rk0b Z§0)) sin % cos

(1+ 1-(2) (7rk0b)2 ‘Vcos¢ - cos 60

E0(¢) = . -¢o <g < ¢o . (3-6-3)

(e) (0)

The unknown factors z, and z, in the last two equations can be obtained
by choosing N =0 in (3-5-7) and N =1 {n (3-5-13), i.e.,
(e)
(R- 00 )28 = "0 S (3-6-4)
ﬁ 0 0 00
24n csc — wk_b Incsc 2
2 0 2
and
sin2 ¢0
(0) 2 (0)
R'Z o= 8, T01 . (3-6-5)

(1+k 2)(1rk0b)2

(0)
1
in (3-6-3). Upon substituting (3-6-4) in

From (3-6-5), it is seen that z

is of 0((11(;2 ), therefore we may neglect
z(0) (0)
1 1

in comparison with a

(3-6-1) and reorganiz ing terms, we have

(e) ¢
242 So co8 3

. ~ I X Noos§ - cos.
0 81r2(1+k2)(k0b) fn csc 0. e 7 X 2 cos § - cos ¢0
mZO-

Ee(¢) =

2 m m Om

P 0<0,- (3-6-6)
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Employing the approximate formulas

2

cosyﬁl--y-— ,

Sihy=y

2

, Yy<<1,

the even part and odd part of the slot electric field can be further simplified

to
4s'®
0 1
Ee(¢) = N . .
- 2 2 2 2
7rk0b [8#2(1 +k2)k0b1n a— - Z- emeXOm] ¢0 -9
0 m=0
_¢0 < ¢ < ¢0 . (3-6'7)
and
L (0)

o 1 ¢ g.<g<yg (3-6-8)

E0(¢) 2 ] ¢0 0 .

m

-2 2
2
(1+k )(kob) ¢02 _ ¢




CHAPTER IV

APPROXIMATE SOLUTION OF
INTEGRAL EQUATION (2-3-32)

1. Introduction:

If we interchange summation with integration and reorganize the terms

on the left hand side of (2-3-32), we have

Smo“ a2 S 2 5T (§+6,)cos 2 (§'-6+0) + cosn(p -9")]
B — —|cos — 9+9 cos — (@'-6+6_)+ cosn ')
Zko T =1 n[ 0 60
6+6,
J o (koao
J (k a) Lo 90 0(kDa)N' (lbb)-J '(kob)l%(k a) o) ( 290 koa
J' (k Ji(ka) 7 Jo(kob)N -J'(koa)No(k b) J'n_ (koa) 29
26, 0

—)cosn(@-9')ydp’

o) Jélba)N'(kob) -(J '(kd))N (koa) koa.
“'*9 ZZ Tl BN (e -0 Go )N (e B o

¢0
B@cosn(-§1dp" ,

0

¢ -6,+6 )cos

A" 2] €
___0 1 2.0 n
a J'(k a) k.a 1 &= Jl;(kob)Nt'l(koa)—Jl'l(koa)Nt'l(kob) S‘-¢

0

6-8y < g < 6+6 (4-1-1)

0 L]
From the recurrence relation of cylindrical functions

= ! - 4-1-2

Z . l(z) p Zp(z) z Zp(z) , ( )

one may easily show that

JM. (koa) J(mr 1)(koa)
2k a6 260
0 - O = 0 0 0 (4_1_3)
t 1]
J nw (koa) zgézr T nJ ur (koa)
26 0 26
0 0

48
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and

0 0

I (egaIN (K b) -3 1(k bIN (k ) ) k a _ kga I _ l(koa)N;l(kob)-J;l(kob)Nn_l(koa)
J"l(kob)NL(koa)-J;l(koa)Nl'u(kob) n n J;l(kob)N;l(koa)—Jh(koa)Nt'l(kob) .

(4-1-4)
For ;—g >>ka in (4-1-3) and n>>kja, kob in (4-1-4) the last two equations
0

1+1 (%) 20 . Therefore the second and the

1
behave, respectively, as ? and ;-3 + Y

third series of the kernel of 1nteg'raliEq. (4-1-1) are uniformly convergent on a

square interval

9-605¢0¢'S6+60 H

while the first series has a logarithmic singularity when @¢§'—> @, Thus the
chance of solving (4-1-1) depends largely on whether or not one can solve the
integral equation

0
0
F(n') f I,l coancosManosnncos o' |dn'= G(n) . (4-1-5)
wd 1 6 6
n=1 0 0
..90

Unfortunately Schwinger's transformation is not applicable to this integral
equation. Therefore, to solve (4-1-1), a new transformation of some form is
required. If both the wedge slot width 290 and shell slot width 2¢0 are much
smaller than unity, we may substitute (3-6-7) and (3-6-8) in (2-3-32) and then
employ Galekin's method(Kantorovich, 1958) to obtain an approximate solution

for the integral equation (2-3-32),

2. Reduction of Integral Eq. (2-3-32):
In Eq. (2-3-32), the variasbles ¢ and @' are referred to the center of

slot, while the unknown function is the @-directed electric field in the

wedge aperture, It is more convenient to express (2-3-32) as function of a new
set of variables n and n' defined as
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n
@
\
S ]

-

n

n=@-6 . (4-2-1)

It is seen that from (4-2-1), n and n' are referred to the center of the wedge
aperture.
Upon substituting (4-2-1) in (2-3-32), we obtain

n1r (kOa)

Q 26 ﬁ
e ——-5 n+0 ) (n')cos—-(n'+0 yan
0

200 O

6. . J u(kOa)NL(k 0b) -J ;l(kob)Nn(koa)
nJd L (kob)N;x(kOa) -J ;l(k 0a)N;l(kob)

0
g £(n') cos n(n-n')dn'

_90

¢-6

v 6 € 0

0o 1 1 0 n A

- — = + — , , , ; E(n%cosn(n-ndn' .
a J 0(kos.) 7k .a w g J n(l(ob)Nn(koﬂ—J n(kota.)Nn(kOb) S_¢ o

0

0

(4-2-2)

In (4-2-2) we may regard £(n) as the sum of a symmetric part ﬁe(n) and
antisymmetric part E O(n) ; thus

f(n) = E_(m+Em . (4-2-3)
Since cos -7 29 (n+9 ) is an even function of n when n is even, and an odd
0

function of n when n is odd, we have

9
g £ (n)cos (n+6 )dn =0 , n=1,3,05,... (4-2-4)

0
-6

0
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%

E (Mcosyt (n+6)dn = 0 , n=0,24,... . (4-2-5)
0 260 0
_60

We also know that

60

S ﬁe(n)stnnndn =0 , (4-2-6)
190
00 .

S Eo(n)cosnrydn =0 . (4-2-7)
_90

If we substitute (4-2-3) into (4-2-2), and use the relations (4-2-4) through (4-2-7)
we may obtain two equations:

nr
I . oo
Z € ——————cos —(n+6,) E (n')cos —(n'+6 )dn'
nJ' ¢ 0 e L’ 0
n=0 E’.’(k a) 0 -8 0
Go 0 0
6
t - ]
T LR i A P
T n= n 0 'n 0a n Oa n o0 -6 ©
0
v . (e)

cosnn

on [3
= - .__Q 1 2 0 n'‘n
a T ka)  Tha T Z J;l(kob)N;l(koa)-J;l(koathvl(kob) . (4-2-8)
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and

6
o] 26 0
0 2n-1 A 2n-1
2_: T T a) °°° 25 m(n+ 00) S E o(n')cos T r(n'+ eo)dn'
n=1 0 0
_90

0
0
sinnn g ﬁo(n')sinnn' dn

_90

J (koa)N:‘(kOb) -J ;l(k 0b)Nn(koa)
J (kOb)N;)(k Oa) -J ;1(k 0a)N;l(kOb)

+
=’|c>

Ms

IR

(0)

6 07 sinnn
o i J'(k_b)N' (12 a)-J' (k.a)N' (k.b) : (4-2-9)
02 T a=in 0 a0 Cnt0* a0

E(n)cosnndn , (4-2-10)

5.{A
o
"
=,

-¢0-9

and
B,-¢

2% 0 _ S E(n)sinnndn . (4-2-11)
-¢0_9

In the preceeding chapter we expressed the shell slot field as function of 9,
therefore to perform the last two integrals, it is more convenient to go back
tothe @ variable. If we employ (4-2-1), then (4-2-10) and (4-2-11)

respectively, become

¢0
Yn(e) = cosnog Ee(¢')cosn¢'d¢'
-¢0
¢0
+ 8inné S E°(¢')sin n¢| d¢' , (4-2-12)

-¢o
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and
(0 %
Y, = cosnog E0(¢')sinn¢'d¢'
-¢0
r %
-slnnG) Ee(¢’)cos ugdg . (4-2-13)
-¢0

If we limit ourselves to the case that the angular width of the shell
slot 2¢0 is much smaller than unity, then substituting (3-6-7) and (3-6-8)
in (4-2-12) and (4-2-13), respectively, and neglecting the term of 0(¢02),
we obtain

as (®

J (n@ )cosnd
Y (e) o, e 070 , (4-2-14)
n 2, —2 2 = 2
kob[87r (1+k )koblna;- ; enTnXOm ]
n—
and
(e) .
48 "'y (n@ )sinno
Yn(O) =~ 0_"0 0 . (4-2-15)

TS TN 2
kb[87r(1+k . bin-— - €1 X ]
0 0" "y " 2 “2"n"om

As was stated in the introduction of the present chapter, we confine
ourselves to the case that the angular width of the wedge slot is much smaller
than unity. Therefore z

6
(4-2-8) and (4-2-9), regpectively, can be approximated by

>>1, and the first series on the left hand side of
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Jnﬂ(koa)
_— 0
i 90 ar 0 ﬁ nr
2 —————— c08 — (n+86.) (n")cos —(n'+6_)dn
n:l J'nﬂ(koa) 60 0 e 90 0
9. =%
0
60 & 2k0a ar 00 A nr 3
~ . _— t Jadddly JON } (]
- Z —— cos 5 (n+60)g Ee(n )cos 5 (n +60)dr7 +O(60 )
n=1 0 -6 0
0
(4-2-16)
and
Ton-1 ”(koa) o
[0.0) 26 0
0 _ 2n-1 AL, 2n-1 - .
ZZ 5 o) °°F 2o m(n+ Go)g Eo(n )cos TN m(n Go)dn
n=1 2rx-11r 0 0 -6 0
290 0
6
6 2k _a 0
fad ._Oi 2n-1 AR 2n-1 ' ' 3
7 Lt Z0-T) cos 7 1r(n+90)S‘ E(n')cos T 7(n +60)dn +O(G0 )
n=1 0 -8 0
0
(4-2-17)

If one inserts (4-2-14) and (4-2-15) into (4-2-8) and (4-2-9), respectively,

and introduces the notations

(1) 1
v = ] -7 ; , (4-2-18)
n Jn(kob)Nn(koa) Jn(koa)Nn(kOb)

(2) J O(ROa)Nb(kob) -J b(kob)No(koa)
\'4 =

0 J o(kob)N 0 (k oa) -J O(k Oa)NO(kob)

(4-2-19)

L@ koa Jn_l(koa)N;l(kob)—J;l(kob)Nn_l(koa)

n = , n¥FoO

n J ;‘(k Ob)N;I(kOa) -J ;l(kOa)N;l(lbb)




one arrives at

3 ,(kg2) o %,
"-,'———- ﬁ (n)dn'+-- cos (n+9 ) E (n')cos -“—"(n'+e hn'
Jo(koa) e 60 0
-8 _90
60 o 2kOa "00 a 60 (0] (2 neo
A ! - o
+ s —cosan S Ee(n )eosnndn+ - €V cosrms E (n)cosnndn
n= _8 n= o
0 0
) 45 (© ®
2 70 0 (1)
€V, J (n¢ )cosnBcosnn
7rkoa T 2 9 N o1 &= n
kob[81r (14K JgbLn -nz_"beHTnXOn ]
Vv
0 1
--0 , (4-2-20)
1
a Jo(koa)
and

0

2k a
0 2n-1
2 cos 7(n+0 )S‘
& 1(2n 1) 90 0

6

n=
_60

(e)
2 48,

5 (n )cos
-0

l+ )
260 1r(n 0 )dn

0 Zkoa 0, 0
+ Z - sinnnS Eo(n')sinnn' dn'+ § sinnng E (n )sinnn'dn'
n=

6

T koa

€7X

14

2 -2 2
kob [87]‘ (1+k )kobl n-¢—-

&0,
]“i

(n¢u)sin nbsinnn = 0

'.3

n On

(4-2-21)
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(e)

where S 0

is given by (3-3-6) and can be rewritten as

(7]
0
e) _ o= _ (1) A
S0 n; €V cos(ne)xon Ee(n')coa nn' dn'

%

%

(1) A
-2t§v sin(nelxong Eo(n')sinnn‘ dn' . (4-2-22)

n
_60

In the next section, from the last three equations, we will find the solutions

A A
for Ee(n) and Eo(n) .

A
3. Approximate Solutions for ﬁe(n) and Eo(n):

We will apply Galerkin's method (Kantorovich, 1958) to find the approximate
solutions for ﬁe(n) and ﬁo(n) . This method requires us to choose the forms
of ﬁe(n) and ﬁo(n) in advance and then to determine the arbitrary constant
for each field by substituting back in the integral equations. Since the electro-
mz;.gnetic fields in the vicinity of a perfectly conducting right angle edge behave as

r 3 (R. E. Collin, 1960) where r is the distance from the field point to the
edge. Thus ﬁe(n) and £ o(n) may take the forms

) A(g)
E (n) = s (4-3-1)
e 3
0 2'772
0
and
E (n) = (4-3-2)
0 3
0 2-7}2
0
(e) (0)
The remaining problem is to determine the constants AO and A0 .
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We first substitute (4-3-1) and (4-3-2) in (4-2-20) and (4-2-21)
Then multplying (4-2-20) with 1/(9 2 2 1/3 and (4-2-21) with n/(O -n )
and integrating with respect to n from -6, to 6., we have

1/3

0 o’
J (k a) o Z a 2k a
(e)\2 0" ,_(e)2 (e)\2 (2) (e 2 (e)
{J(ka,(q s 7[2——“ @' )+Zj —_Q®) ofb 3]}1&0
n=1 n=1 n=
a0
1
0 4; envf1 210(n¢0)cos(nen(:) R v

__2 0 n= S(e) - __0_____1____Q(e)

7k a =« N 0 a Ji(k.a)™ 0

0 2 -2 2 2 00
kb [87r (1+k )kobln%-;%'rnxoll ]
(4-3-3)
<o> S 012, > (2, (032 (0
{" 2n 1 : (Q )+:vn (Qn))} AO
n= n=
Q0
4: Vfll)J oo ) sicla e)QgO)

+ 2 n= S(e) =0 (4-3-4)

7k _a ?

N 0
2, =2 2 E 2
kob [81! (1+k )koblna(-)-n-- €nTnX0n ]

and

€ _ ()= (1) (e) (O)i (1) . (0)
S0 = A0 r;)envn cos(ne)XonQn —2A0 n=1vn su(nG)XOnQn (4-3-5)

where
90 cos %E ndn
ple). g 3_._.9.._..__ (4-3-6)
n 2 2
-6 2]
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6 nsin 20 -1 n
(0) 0 260
P = —_—— dn (4-3-17)
n 3
" 22
0 o "
6
(e) 0 cosnndn
Q = (4“3"8)
n 3
-6 0 2_ 2
0 o "
60
Q(0) - nsinnndn (4-3-9)
n 3 2 o
-90 80 -n

Integrals (4-3-6) through (4-3-9) are discussed in A-7. It is shown in A-7 that

1 1
) _ , 3 2.,2.6
P =6, Wf’(é—)(a) J1/6 (nm)
1 ] (4-3-10)
(e) _ , 3 2,, 2.6
Q, = 9 ‘v'?r(g)(ﬁ(;) J1/6(n00)

(e) (0), (e)
n and Q /Q n
From (4-3-3) through (4-3-5), one can easily obtain that

while P(g)/P are at least of 0(60) and 0(602), respectively.

Q(e)
(e) ~ 0. °n .
Ay = - & (4-3-11)
and
2 > (1) (e) ][ 2 < (1) (0) ‘J
(e) € v 'J(nf )Q ‘cosnb||— v "'J (n@ sinnf
0) o V. Q, . [ﬂkoaé nn 00 n wkoanz;-l n J001%
0 a A © N
(0)2 -2 2 2
(kob)[nz 1(Pn)) /(2n-1)] [2(1+k )kobln —ag-nz enanO(n¢0 )]

(4-3-12)
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where

0
A= 3 k@ QY- Ly (o) I af‘_w‘e’) n+ 2 a}_}( Q¥

1<4) e). s x 1-v
+ €V Q) - 5
n; anom mk,“ab 214k % DI (2/8,)- ﬁ €7 d (n¢ )

(4-3-13)

In Eq. (4-3-11) and (4-3-12) we use the approximately equal sign because

in (4-3-13) we have neglected the terms of 0(0 8/3) and replaced X0 with

2nJ (n¢ ) on account of (A-4-16) and for the convenience of computation.

One also notices from (4-3-10) that the series f : (Q(e)) /u in (4-3-13)
n:
converges very slowly when 6 < < 1, Fortunately, under this condition, it

0
is found in A-8 that

Z (Q(e) /o = (e’ £n (2/6,) +0.05053 902/3 . (4-3-14)
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SLOT VOLTAGES AND TERMINAL ADMITTANCE OF THE
WEDGE WAVEGUIDE FOR NARROW SLOTS

1, Introduction

In this chapter we will obtain explicitly the three important physical
quantities: the wedge slot voltage, the shell slot voltage and the terminal
admittance of the wedge waveguide when the angular width of the shell slot
and the wedge aperture are very small in comparison with unity. The voltages

of the wedge aperture and of the shell slot are defined, respectively, as

90
v o= S af(man (5-1-1)
w
-6
0
and
¢0
v, o= -g bE(@)dp . (5-1-2)
_¢0
Since
60 )
S aEO(n)dn =0
_90
and
¢0

Coaa™™
(o
o]

o
~~
@
A d
(o9
@
]
o

60
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consequently, we arrive at

0
vV = -g ak (n)dn (5-1-3)
w e
_90
q¢0
v, - -s bE_(Hag . (5-1-4)
_¢0

In deriving the explicit form of the terminal admittance, we neglect all
terms whose magnitude are of 0(¢02), or 0(902), or less in comparisonwith
the magnitude of Sf)e)

2. Voltages of the Wedge Aperture and the Shell Slot
From (5-1-3), (5-1-4), (3-6-7) and (4-3-1), it is obvious that

_ (e)] 2
Ve =V [QO ] A, (5-2-1)
and
©
(1) (e)
Vs \ ,; €V cos(no)y 0( n¢0)Qn
v (e) 2 (5-2-2)

—2 N 2
w 7k,.aQ 2(1+k "k . bin o - €7 J (nf)
0*~0 0",y 0 m 00

where /\ is given by (4-3-13). It is seen from (4-3-13) that Vw is only
weakly dependent on the slot separation angle 0, plasma sheath and the

coaxial spacing, except when J 0(k a) is close to a zero. For this exception

0
one can show for 60 <<'1 that

Vi = VO/JO(kOa) . (5-2-3)
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Thus for the radiation problem, one may even regard the narrow wedge
aperture as a constant voltage source. On the other hand the voltage of the
shell slot depends not only on Vw' but also on 6, (kob-koa), and plasma sheath.

3. Terminal Admittance of the Wedge Waveguide When O9e! ¢0 <<1

The terminal admittance shown in (2-4-4) consists of three series. We
will consider these series in the next few paragraphs.

The first series is

er (kOa)
_— 6+6
o) 290 0 ﬁ o
= ————— | —— v t
I = 2] T ) g (@) cos 5o (#'-6+6,)d¢
n= nr 0 6-6 0
200 0

which can be separated into two series, i.e.,

_B.I.(koa) 3
®, 26, DA ar 2
= 3 e———————— 1 —_— ' ]
I =2j Z: ) Ee(n )cos 5 (n +60)dn
=1 ar 0 0 0
260 0
Tm-1 (lcg2) o
i 290 0 . 2n-1 2
+ : E (n')sin (n"+6.)dn
“=1J2“‘1n (ky2) g-e 0 26, 0
290 0

since @' and n' are related by (4-2-1). Since 6, << 1, similar to (4-2-16)

0
and (4-2-17), we employ the approximate fdrmulas

Jﬂ(koa)

60 o 3 koa
1]

JM(koa) T n
6
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J 2n-1 (kOa)
290 o fg 2k0a
T'on -1 ko2 T 2n-1 °
260

then using (4-3-1) and (4-3-2), we have

6 00
[ = 2jkpe: 2 {(A‘:))zn}:_';(p‘:'))z/m(A‘g))zzz(p‘:))z/(zn-1)}

As we indicate in A-7, the magnitude of P(e)/ P(e) is at least of 0(90),

therefore one may neglect the second term and arrlve at

7] 00 2k a
~ 0 (e),2 ( )\2
11 =ij= (A ) Z :—n—( ) . (5-3-1)

n
n=1

The second series of (2-4-4) by change of variable (4-2-1) and using (4-2-3)
can be written in the form

0

000 3 0k g@)N! (k b) -37 (k BIN_(k a) 0 ,
I2 i Z nJ'(k b)N' (k a) - J'(k a)N (k b) [(‘( E_(n)cosnn dn)
-q
0
+ (S E(n) sinnndn) ] ;
_90

If one substitutes (4-3-1) and (4-3-2) in last equation, and neglects the terms of
9
0(90'), one has

6 J (k a)N'(k b) J'(k b)N (k a)
[ = j_(_)(A(e))z (Q( ))
2 T 0 — nJ'(k b)N'(k a)- J'(k a)N' (k b)

Using (4-1-4), we can reduce I

2

9 in a more convenient form, i.e.,
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—
i

y —(A(e)) {Z A QN ax a i(Q(e)) /} (5-3-2)

n=0

The last series of (2-4-4) is

6+8 ¢
6 [o1] 0 0
2 1
I, = _7r£ — azb 6nv£1 )[ S ﬁ(¢)cos n@ dg S Ee(¢')cos n@' d¢'
0 n= 0-86 -4
0 0
Ik ) 0
+ g E (@)sinng d¢S‘ Eo(¢)sin ng' d¢'] (5-3-3)
9% "o
where v S) is given by (4-2-18). Again if we make use of (4-2-1) and (4-2-3)

and consider ﬁ(n) as the sum of the even function A(g) / "3’962- n2 and the

odd function A(o)n/(o -n ) 13 , it is obvious that

6+6
0
g ﬁ(¢)cos ngdg = Aée) Q(e) cosnf - A(O) Q(o)sin no (5-3-4)
n 0 n
0- 90
and
6+ 90
g £ (#)sinngdd = Ag)) QflO) cos o+ Af)e) Qfle)sin ne . (5-3-5)
0- 90
From (3-6-7) and (3-6-8), respectively,
% (e) 1, ()
S Ee(¢)cos ngdg = (5-3-6)

2, —2 o 2
_¢0 kob [81r (1+k )kobln(2/¢0)- [§€n7nxon ]
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and
¢0 a(0)¢
S E0(¢)sinn¢d¢ = - __; 0 3 Jl(n¢0) . (5-3-17)
7(1+k ) (k.b)
_¢0 0

Upon substituting (5-3-4) through (5-3-7) in (5-3-3} and neglecting the terms of
2 2
o(¢0 ) 0(6,, ) and 0(90¢0) ,

[o1)
vo A©)S) > e v eostnoy (ng Q"
0 0 0 n=0
I, = -j (5-3-8)
3 T 7rk0a 9 —9 2 N 9
Tkgh 214K ) Gegh) L g - Z €, 7308,
0 n=0

where S(e) is given by (4-3-5). Therefore, inserting (4-3-5) in the last

0
equation, one obtains

2
(e) f (1) (e)
60 , 27r(AO )<I=Oenvn Jo(n¢0)Qn cosn%
I 2 —j

3 T kA s , & )
T kob [2(1+k )koblna(—) - gen‘rnJO(n%)}

' (5-3-9)

Now we add (5-3-1), (5-3-2) and (5-3-9) together and obtain

0

% 1 S 1, ()2 2 (e),2
Y(a)—]7—7é)—)§ 2k0a[;H(Pn)+hZ_:1 Q )]

(Q0 =1

(Ze v J (n¢ ) cos(n6 \c')

m k ab

"3 v B Qleh? . X . (5-3-10)
n= nn n -2 Z 2

2
2(1+k )kObln%-nzoenTnJO (n¢o)
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Thus substituting (5-3-10) in (2-4-5), we obtain an explicit formula for the
terminal admittance Y(a) of the wedge waveguide. For the convenience in
presenting data, in Eq. (2-4-5), we choose L =a and attain the resulting form

of

14/ = 2, |~ 2
Y(a) ujz—,,‘v% mcoa[g(Pff)/Qge)) /n+ n}; @/oleh /n]

2 s, (&), (e) 2
<> (2), (e)2 a l:’rkoa!§)6nvn ‘TO(n¢0)(Qn /QO ) cos nf
+r§€nvn (Qn ) '-g -, . = .
2(1+k kb lna?)—n;)EDTnJO (g )
(5-3-11)

The last term inside the brace can be written as

2 N
=2, % 2 x 2
. {41+(k ) ]kob!na(—)-;en'rn Jo(n¢0)}

where the voltage ratio Vs/VW is given by (5-2-2), In view of (3-1-6), we

further introduce the notations

. (3) _ JO(kOb)Nb(kOa) - Jb(koa)No(kOb)
0 J b(k Ob)Nb(k 0a) -J b(k Oa)NE)(k 0b)

1 - T
(3) _ kOb Jr1+ l(kOb)Nn(kOa) Jn(koa)Nn+ 1(kob) e (5-3-12)
n — : s
n J ;l(kob)Nh(kOa) J n(koa)N;l(kOb) =
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and
7rb =T , |
2
BN ( )-J'(k )N (k)| -k fl)(ko) BN (ko)-N (kb (kc)
h n l(kl klc c k1 (2) k1 nlﬁc- n-lkl nklc
n n (2)(k0c)
RJ(klc)N' (klb) -J '(klb) (kf’) (k o . J;x(k1°)N;1(k1b)'J:'x(lﬁuN:;(k‘lc’
(5-3-13)
Then 7. and T become
0 n
(2)
T, = 7 (k ? - v(s)
0 0 (2)(k e) 0
(2)
i Hn (koc) (3)
L (2) v n>1 . (5-3-14)
(k c)

Thus if G and B respectively, denote the terminal conductance and suscep-

tance, then from (5-3-11) through (5-3-14) one arrives at

2 (1)
\' H '(k.c)
140 0a |'s i xn 0° 2%
G = _\,i 2 Im| Y e (1) e (n )- 26 %)’k o0 1n(2/8)| .
27 Ho b Vw 2 L= nn H(l)(k 0) ¢0 0

(5-3-15)
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1
o {Zk a[z R +f: Qe /n]

2

N
+i €V 512)(Qfle)/Qge))2 ﬁ_&.l_[n:, (3)J 2 ¢ )+ 2k bln(2/¢ )]
n=0 ' Wl

2 ey

2 Vs Re 3 € () _.__(@Jz(n(b )-2(1'('2)*k bin(2/¢ )

b IV|2 '; n n (1)(k e) 0'""0 0 ]
w 3

+

(5-3-16)
where Im and Re are the abreviations of '"real part" and "imaginary part"
respectively. Since (5-3-15) and (5-3-16) are so complicated that in general
one can hardly obtain any information before actually performing the
numerical computations. However, in a certain special cases, some properties
of the conductance G and susceptance B can be read from the expressions.
Case a: In this case, we assume no plasma sheath, i.e. we let ¢ > b and

k — 1. From (2-3-26), it can be shown that m—>1 . Since

()
(kkyb) 9

) =
(k b) 7rk0b

m (

(1)

then (5-3-15) is easily reduced to a form

(5-3-17)
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If we divide (5-3-17) by (A-9-4), then we obtaina formula of similar form as
Eq. (38) in one of Olte's recent papers (1965). This coincidence is a physical
consequence because from the circuit point of view, if V is the terminal
voltage, G is input conductance then it is well known that the power P =GV2 .
It is interesting to note that as ¢-> 0, G decreases as —1/J¢n¢0 and B

eads tC an cxpresgion independent of ¢ and 6,

Bar V—‘[Z (P(e)/Q(e)) / + i;l (QLG)/QS)G))Z/H

©
R 2k10aZO env(2) (e)/Q(e) 2] ) (5-3-18)
n:

The susceptance given by last equation is the terminal susceptance of the wedge
waveguide for the case of no shell slot, i.e. a continuous shell shrouds the
cylindrical antenna,

Case b: In the present case, we assume that | EI <10, k.b-k a<<k_ a,k b

0 0 0’0

and k0a= m, a positive integer.. In this report, we limit ourselves to koa <5,

© 00
Since the series nZ=o (2)(Q(e)/Q(e) and lg)envgl‘),éwonﬁle)/Qf)e))cos n6

(the numerator of Vs / Vw’ (5-2-2)) converge absolutely, we may truncate them

N
at Mth term and then these truncated series as weil as the Z €V
n=0

3 2
will be proved to be dominated by their respective mth terms.

If kob -koa << koa, kob, it is found that

I - kg@IN! (k b) - 3 (k bIN _, (k b)

n 2

k
koa T Oa

+ k(b -2) [Jn_ (k@) NGk a) -3 (k@) N _ l(koa)] + ...,
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S B ]
Jn+ l(kOb) Nh(koa) Jn(koa) Nn+ l(kob)

- n 2 " "
koo ~Ko(B-a) [T (kDI (ko) =37 GegbIN  (egb) ]+
J;l(kob) N' (ka)-J! (koa) N (k b)
2 2
_ 2k0(b"a) ( n )2_1+ M[J"' (k.a)N'(k a)-J'(k a)N'"! (k a)]
wkoa [koa } 2 n 0 n 0 n 0" n 0

t...

where n > 1, Thus if one made use of the above results, it is clear that

(e)

= Q
(2)  (e), (e)2 4 .2 1 “m 2
Z{n"n @, /8y )"~ 57— 7517 er) *OlkobKo2]}
ne kq(b-a) 0" 'm Q,
(5-3-19)
o (1) (e), (e) 4 J0(m¢0)(%:le)cos mé
;envn Jo@d)(Q ~/Q, ") cos no= PR { o +O[k0b—k0a]},
b (R QO m
(5-3-20)
and
3 3 (mg)
anvn Jo (n¢0)a D) 5 - b{ F + O(kob‘koa)} 5 (5-3_21)
n=0 k, (b-2)" ""0 m
where

Fm = J;;ll' (koa)N;n(koa) - J'm(koa) NI'!'I' (koa) (5-3-22)
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If one substitutes (5-3-19) through (5-3-22) in (5-3-16) and (5-2-2),

one obtains
1 4% . 0 Q(e) koz(b-a)z o 2ka Q (e) 5
Ho k, 2b-2)° b F k2 Qg a=y ° oe
IV 2 , k(f(b—a)2
" [WF 0 I, (m¢) — 2k0azn(2/¢o)]
v’
v zkle-0’ e g (! )(koc) 2
+ 2|8 R e () =2 0 5 %ng)
b |V 4 e| = ‘2" (1)' 0 0
w n= ( 0 )
—2 %
-2k ) kob4n (2/¢0) ,
kja=m (5-3-23)
and
is_z 2 Eo(m¢ )Q(e)cosme,(Qé)F ;}
Vo  Tke? 2J(2) (m¢0) k 2(b'a) 2)

0 [ 2/¢ i H (k c) 2
+ 2(1+k )k b £n(2/.) €n —s—J (n¢ ]
ﬂkOme 4 (2)(k ¢)

[+=)

(5-3-24)

Since |I'E] <1 and the angular width of the wedge aperture and shell slot in

practical case are small but finite, Eqs. (5-3-23) and (5-3-24) can be further
reduced to
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is—g er:le) cos mé6 + qk (b_a)] ka=m (5_3_25)
Vo a QO(e) Jo(m¢o) 0 : 0
Q<e) 2
4 m b 2
B = l1-—cos m@+O0O[k. (b-a)|} ,
kjaF Qée)k (b -2) { a [ 0 ]}
0
kOa = m (5-3-26)
If we substitute (5-3-25) in (5-3-15), we obtain
(e)
Q
G = - 2—1- 0 b (—m——)2 coszme
™ Y, (e) (m¢ )
{ N ( )(kOC)
O | e(rr‘) - 90 (n¢)-2(k ) kb!n(2/¢ }
m ng ili(k e) 0 0
+ O[ko(b—a)] , kpa=m . (5-3-27)

It is interesting to note that in the present case, both G and B depends

strongly on koa, ko(b -a) and 6 but only G depends on the plasma sheath

and shell slot width 2¢0 .

Case C: If we keep the radii k.a and k. b constant, ¢0 and 6, small

0 0

0
but finite, 6=0, v/w = 0 and wp/w >>1, then
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(2)(k c) w b

1 ____'__ _(
n (2)(k c)

€ |
a®
|

W w . W
H(Z)(k c)cos ){—pk (c -b)]- —EH(Z) (k c) sinl{-fko(c -bﬂ

512) (k c)cosh[ Py (c b)]+ H( )(k c) sml{wpko(c -bi

ELE

(5-3-28)

(a)

Therefore

(1)
N (k ¢c)
Im € (w')* %o %o J2(n¢)

I; (1)(k c)

2wp 2
2 e- Tko(c—b) N € J (n¢ )
0 n=0 | (1)'(k c)

(5-3-29)

00 ( )(koc)
ngoen(ﬂ'n) —HF— JO (n¢ )

w N k.b w N

) 2 0° 2 .. % 2
=-2(-H) n;)TJo(n%) . r§) €. Jg () . (5-3-30)
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On the right hand-side of (5-3-30), one notes that from (A-8-12), the first
“p\2
term is approximately equal to -2(—5) kobln(2/¢0) . Hence, upon employing

(5-3-29) and (5-3-30), lVS/le 2, G and B respectively become

vV |2

8 W |2 2
— a‘(;)—) (Cs/ct) , (5-3-31)
w P
C = 2 i € v(l) (e)/Q(e)) J (0@ )cosnd (5-3-32)
s 7k a n 0o !
0 n=0
Al 2
c, > € 3,0 (5-3-33)
n=0
2 wp
ch.k_gf _EQ[ 1 I (n¢ ) ]( s)2(w)2e—2_u7k0(c-b)
S R E e Im'(k )’ “p
(5-3-34}
k a fe roo (o0
o 040} (e), (e)2 (e), (e)2 1 (2) (e) (e)2
o= (8 e e F P
O Nn-l n—l O n=
N
}jb R o3 2( @) + 2kgbin(2/6)
-(Csz/2k0b)[-g- L 5 (g-)zJ . (5-3-35)
t “p C p

t

Equation (5-3-34) and (5-3-35) show that for an overdense plasma sheath,

if we ignore the collision effects, the terminal conductance G decreases with a

2 e—2k0(c -b) wp/w

factor (w/wp) and the terminal susceptance B approaches

to the case of no shell slot as shown in (5-3-18 ),




VI

EQUIVALENT CIRCUIT FOR A COAXIAL ANTENNA
WITH A PLASMA SHEATH

1. Introduction:

In chapter II, we derived the general stationary form for the terminal
admittance of the wedge waveguide. Upon using the results from chapter III

and chapter IV for 6, << 1 we finally arrived at an explicit formula for this

0
admittance in chapter V. It is clear that this admittance is a function of the
11 : .
following factors koa, kob, koc, 0, wp/w, v/w, 60, and ¢0 If one can

find some explicit expressions to indicate the individual role of each of the
above factors in Y(a), then one knows all details of the coaxial antenna.
Unfortunately, this is practically impossible. However, it is also valuable

to know the individual influence of the wedge region, the coaxial region,
plasma sheath and free space on Y (a), respectively. If we refer to the
normalized stationary form of the terminal admittance y(a), (2-4-4), itis
found that one can hardly identify the individual influence of each of the above
four regions on y(a). Thus we turn to seek some other way to formulate the
normalized terminal admittance of the wedge waveguide so that the effects of
the above four regions can be discussed. In section 2 of this chapter, we
furnish a new formulation of y(a) which allows one to propose an equivalent
circuit for the antenna., In section 3, we also discuss the physical significance
of each circuit component of the equ{valent circuit. However, the new
formulation of y(a) is not stationary with respect to the functional variation
of the wedge aperture field and therefore, as long as the exaci solution for the
wedge aperture field is not found, the stationary formulation of y(a), (2-4-4),

is still important in producing the numerical results.
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2. An Equivalent Circuit of the Coaxial Antenna:

€
Upon multiplying (2-4-3) with 2—;——- — f (¢)d¢ and integrating from
0 0

- +
] 60 to 6 90, we have

— 6+ 6 2
1 o 0
%\_ y(a) £ () ag
U
° 0 6-6
0
9+90 2
:_é(; “_O— i r K2/ Ton (k a) £ (¢)cos (¢ 6+6)) df
29
60 (0.0) J (k a)N'(k b) J'(k b)N (koa) 6+ 60 » 0+ GOA
+J?n OnJ (k b)Nf(k a)- J'(k a)N'(k B) g dg E (¢)g E(@" cos n(@-@ d¢
-6, 6-6,
60 2 D (1) 6+ 90 ﬁ* ¢O
o R ko3 HZ:;)GnVn g dg (¢)S E (§')cosn (g - ¢') ¢ o (6-2-1)
% -,

Following the same procedures as in A-1, one may find that the above equation
is not stationary. From the definition (2-4-5) of Y(a), taking L =a and
by virtue of integral Eq. (2-3-31), we write (6-2-1) in the form

_ _ .2 _ 42 (6-2-2)
Y(a)—ij - 3(13.cl ] Bcz) 1 Ypf
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where
9*’%) 2
f (¢)cos (@-0+89 )d¢

_V—VZ;< (ka)/r' (ka> |20 ,

(8-2-3)
o S
S dg E (@) ﬁ(¢')cos n(@-@"ag
5 i J(k a)N'(k b) J'(k b)N(k a) 9—90 6-60
cl” 27r Ho nJ'(k b)N'(k a)—J'(k a)N'(kOb) IT I 2
w
(6-2-4)
g g

o
% d¢ E (¢)S E (") cos n(@#-@)dg@"
b ayfom, TN S %
c2 a2r Mo &< nJI'l(kob)N['x(kOa)-Jé(lba)N}kob) | 2

IT
S
(6-2-5)
¢0 , ¢O
% d¢E'”(¢)S E(@')cosn (¢ - @) a¢'
\f?ﬂ (k c) '%) _Q)
= _] =
a 27 fu Z‘ H (k ¢) ITSI 2
(6-2-6)
9+90
T, * S Rag (6-2-17)
6-6
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¢o
T, =g E(g)dg , (6-2-8)
-¢0
and
T
L = I SI ) (6-2-9)
.|
w

Equation (6-2-2) suggests an equivalent terminal circuit of the wedge

transmission line as shown in Fig. 6-1,

[

B, [i H] Yo

Ideal Transformer

Wedge Transmissio
Line

—5-

FIG. 6-1: EQUIVALENT CIRCUIT FOR THE COAXIAL ANTENNA

It is seen from (6-2-3) through (6-2-9) that Bw’ B are

cl’ Bc2

real quantities while Yp £ is a complex quantity, therefore the first three

circuit components are susceptances and last one is an admittance. One may

also note that the only 6 dependent circuit component is the transformer turn
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ratio £. In the next section, we will discuss the physical significance of

these circuit components in detail.

3. Physical Significance of the Circuit Components:

In (6-2-3), we note that Bw depends only on koa, 60 and ﬁ(¢), the
wedge aperture field. Furthermore, if we let E:, E¢h and H: represent
the electric fieid and magneiic field in the wedge region minus the TEM
mode field, then the integral

a a 6+ 60
* h _hx* h _ hx
v dz\ dr e ' 2* + E Eh)-u(;{ H ]rd¢
ol | 2 0r r 1 ) z oz
I WI 0 0 6-60

in view of Eqs. (2-2-1) through (2-2-3), can be reduced to a form exactly
the same as shown on the right hand-side of (6-2-3) which defines the sus-
ceptance Bw . Therefore, we may regard Bw as the susceptance due to
the higher order mode fields in the wedge region. For narrow angular width

of the wedge or small koa, Bw can be reduced to

2
B - w[Cw + 0lky26,) ] (6-3-1)

where

€a

6+ 90 2
. 0 1 ar 2
CW = = n2=1 I g ﬁ(¢)COS 2—6;)—(¢-9+ 90) ag ITWI . (6-3-2)

0

It is seen from (6-3-1) that the dominant part in square bracket is the capacitor
Cw which from (6-3-2), depends upon the radius of the cylinder and the
angular width of the wedge aperture,
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In Eq. (6-2-4), if we make use of (4-2-19), we may separate the right
hand-side into two series and obtain

6+86 6+6

0 x 04
g ag £ (¢) g E(@)cosn(g - ¢') d¢*
9-

7] 6-6
B ‘wC + g (2) 0 20 ’
£ )

(6-3-3)
where
6+6) N 6+6)
g d¢E'(¢)S E (#) cosn (¢ - ¢") dg’
€ a 0 6-8 6-6
< Z% 0 20 . (6-3-4)
w i

When the angular width of the wedge is very small, we may employ the wedge

aperture field (4-3-1) and then because of (A-8-12), we have

€2

o2 o -3-5
C., — In(2/8) . (6-3-5)
The second term of (6-3-3), because of v (2), (4-2-19), converges

) ¥%

rapidly. Ccl may be considered as the capacitance due to the fringe fields

of the wedge aperture. The same fringe capacitance can be found when the
circular shell and plasma sheath are not present, Schelkunoff (1952) in deriving
the terminal admittance of the biconical antenna also found a capacitance which
has a logarithmic singularity as the cone angle 6 —> %

The next circuit component to be discussed is Bcz . Since
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J n(kob)N‘;(kOa) -J h(koa)Nn(kob) _ kob V(S)
J ;l(kob)NL(koa) -J ;l(koa)N;l(k Ob) n n

where vfls) is given by (5-3-12), we may write (6-2-5) in a form
i n
%o

Yo
d¢E"<¢)g E (') cos n(¢ - ¢') dg*
- -¢
_ __1’ 3 % 0
BcZ-wC +a21r “02 ITIZ

where

(6-3-6)

¢0 x ¢0
S dg E (9) S E (') cos n(@ - ¢') dg*
i) i)

n=1 |T

5 (6-3-17)

!

Similar to C we regard C _ as the capacitance due to the fringing

cl’ c2
field of the shell slot in the coaxial region. For narrow shell slot, upon

substituting (3-6-7) in (6-3-7) and making use of (A-8-12), we obtain

Hence, as the angular width of the shell slot approaches zero, the capa-

citance Cc2 also has a logarithmic singularity. The series in (6-3-6) converges

rapidly and for narrow shell slot ¢O' it is weakly dependent on ¢
Since in the plasma sheath, there is also a fringe field neighboring to the
shell slot, we expect that this fringe field will contribute to a capacitance.

To investigate the nature of this capacitance, we turn our attention to Ypf’
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l_(-zklb
(6-2-6). Comparing (5-3-14) with (3-1-6), we observe that L 1r:1 - —

for n # 0 where rr' is given by (5-3-13). Therefore Y , can be reduced to

pf
WeE, a H (k c)
_ U 2.+ b 1, '
Y=l &) A '221728‘(")
0
d¢E (¢)g E(@)cosn(g-¢')dg'
-¢
) ° , (6-3-8)
8
T °
and
¢0 ¢0
% d¢E*(¢)S E (§) cos u (@ - §") g
o *-¢ -9
A, = (22> 0 02 (6-3-9)
T & a=1 ITBI
We see from (6-3- 9) that for 2¢0 <<1, we find
b2, , 2 i
Afr o (-a-) in (a‘;) . (6-3-10)

In (6-3-8), we may regard the first term on the right side as the admittance
associated with shell slot fringe field in the plasma sheath, From the

defining equation of the dielectric constant k of the plasma, (2-2-14), we can
show that the above fringe admittance is composed of three parallel branches
and can be written as

€ a
“o

j (6-3-11)

(k )* A =jw (c )+G03
wL

c3
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where
€2
CC3 = —7(- Afl' 2 (6-3-12)
2
K a 1+ /w)
L, = - ( )2 (6-3-13)
el 7 ‘'k.a . A2, : T
v \wp/wl nfl‘
VEqsa (w /w)zAfr
G, = P . (6-3-14)
c3 T

1-'-(1//(0)2

C03 is a capacitance due to fringing fields, Lc3 is an inductance

due to the plasma, and Gc 3 is a conductance which accounts for the power
dissipatedby the shell slot fringe field in the plasma sheath. As ¢0——> 0, it

is seen from (6-3-12) through (6-3-14) that C,5 and G, have logarithmic

singularity while Lc3 approaches zero. Since 3Afr is orfly weakly dependent

on the plasma sheath, thus Cc 3 is also weakly dependent on the plasma constants.
Lc 3 is inversely proportional to (wp/w)2 and GcS increases as (wp/w)2 . Thus
increasing the plasma density tends to short out the shell slot. The real part of
the second term on the right hand-side of (6-3- 8) may be associated with the
power radiated into the free space and the power loss in the plasma sheath by other
than the fringe field of the slot. The imaginary part of this term may be related
to the stored energy in the plasma sheath and the free space with the slot fringe
field excluded. To investigate the connections between Ypf and the stored
energies, the power loss in the plasma sheath, and the power radiated into the free
space, it is more convenient to start with (6-2-6), From (A-10-9 ), it can be

easily shown that

m . I III \% v, .2 .2
+ - i - = -3
2P j 4w (WH W ) + 2Pr+ ]4w(WIH wE )=b |TS| Ypf . (6-3-15)
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where

Pr = time averaged power radiated into the free space

P = time averaged power loss in the plasma sheath

=
1}

H time averaged energy stored in the magnetic field

w

E time averaged energy stored in the electric field

and the superscripts III and IV denote the plasma sheath and the free space,
respectively. If we define the radiation conductance Gr and plasma con-

ductance Gp, respectively, as

2P
— r -
GI‘ = m » (6-3-16)
[Tl
III
G = *‘gz—P——g' ’ (6-3-17)
by
8
then
G +G =ReY . (6-3-18)
r P pf

The imaginary part of Yp , from (6-3-15) is a susceptance which accounts for
the difference of the time averaged stored energies in the magnetic field and
electric field exterior to the conducting shell. It can be visualized that

W [Cc3 -1 /(w2 Lc3)] and Gc3 are a part of the susceptance and conductance represented by

Im Ypf and Gp respectively. In (A-10-10) we derived the expression for Pr'
From this equation and (6-3-16), when wp > > w, one can show that Gr




85

-X ko(c -b)
decreases as the factor e P if xpko(c -b)>>1 where

W 1/2 1/2
=Py, 1 Yy2
xp--w_{2+2[1+4(w)] }

The coaxial region not only behaves as a reactive element, but also couples
the two slots. In the equivalent circuit, we indicate this coupling effect by a
transformer of turn ratio £ as defined in (6-2-9), Since these two slots are
separated by an angle 6, £ willbe a circuit constant in Fig. 6-1 that
depends upon the separation angle 6. Apparently, £ also depends on the
radii koa and kob. However, since the shell slot opens into the plasma
sheath, £ is also modified by the plasma constants. To have an idea as to
how £ depends upon these factors, the reader may refer to (5-2-2) in

which the angular width of wedge aperture and shell slot are assumed very

narrow.




VII
NUMERICAL RESULTS AND CONCLUSIONS

1. Introduction:

In this chapter, we present the numerical results based on computations
from (5-3-11). From this equation we note that Y(a) is a function of koa,

kob, koc, 6, wp/w and p/w; thus in presenting data, we successively

choose 6, ko(b-a), ko(c-b), koa and wp/w as the abscissas. The com-

putations were performed on a digital computer 7090 for 6. and ¢O equal

0
to 0.03 radians, Since the method of solution of the integral Eqgs. (2-3-31)

and (2-3-32) given in chapter III and chapter 1V , respectively, is primarily

a low frequency approximation , we limit k.a in the computations to the

0

interval 0.1 < koa < 4,3, In(5-3-11), we sum the series

i(P(e)/Q(e))z/n to 250 terms and the series Z (Q(e)/Q(6))2/n by the

method shown in A-8, The factor vill)

enters into the series defining the
numerator of the last term inside the brace of (5-3-11); this series we sum to

M terms. The number M is determined by two conditions: a) in the last
(1)

terms preceeding the Mth term, ‘vn l decreases monotonically, b)
( -6
ll(l) / vu) <10  where v(l) is the largest among v(l) Since
"M p n
vflz) » Ty decrease faster than vfll) as n becomes large , we sum the

& (2) Q)/qe)?
series g €V /Q to Mth term and for the finite sum

2
en"rnJo(n¢0) we set N = M,

M-

86
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In the following sections, we first present and discuss the numerical
results, then we summarize what we have done in this report. Finally, we

make some brief conclusions based on the theoretical discussions and numerical

results,

2. Numerical Results:

, we plot the normalized conductance G/G'
and the normalized susceptance B/B' as a function of 6 for the no plasma

sheath case. In this figure, the radii koa and kob are the parameters;

G' and B', respectively, are the terminal conductance and susceptance
of the wedge waveguide without the conducting shell and plasma sheath,
Their formulas are (A-9-4) and (A-9-5), respectively. G' and B!

depend only upon the radius koa and the wedge width 290 . Imn

Fig. 7-1(a) and (b), four different values of the radius koa are used. We

tabulate the corresponding values of G' and B' in Table VII-1 for reference.

koa G} mhos B', mhos

0.2 1.33x10°Y 8.72x107%
1.0  1.04x 1073 3.59 x 1073
1.8 2.08x10°° 5.69 x 10°°
4.3 5.35x10°°  10.5 x10°°

TABLE VII-1: TERMINAL CONDUCTANCE AND SUSCEPTANCE
WITHOUT CONDUCTING SHELL., WEDGE WIDTH
0.06 RADIANS,

In Figf 7-2(a) and (b), we plot the terminal conductance and the ter-
minal susceptance versus separation angle 6, with wo/w as the parameter
a: k. b, and k c are

0 0 0
kept at 1.0, 1.1, and 1.2, respectively. In Fig, 7-3(a) and (b), we repeat

for the collision-free plasma sheath, The radii k

Fig. 7-2, except v/w is used as the parameter and wp/w = 1,5, It is seen
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(k0a=4.3; kb =4.55)

0

10

G/G'

0.1

0.0

10—(0.2;0. 3) 8 —>

(koa = 1.8;k0b =20 e
x ~ Ay e m === T *x
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_15 -
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(b) 7
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o} 30° 60° 90° 120° 150° 180°
e —>

FIG. 7-1: (a) NORMALIZED CONDUCTANCE AND (b) SUSCEPTANCE VERSUS
6 WITH NO PLASMA SHEATH AND (koa ; kob) AS THE PARAMETER
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FIG. 7-2: (a) CONDUCTANCE AND (b) SUSCEPTANCE WITH
A COLLISIONLESS PLASMA SHEATH VERSUS 6 FOR k
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FIG. 7-3: (a) CONDUCTANCE AND (b) SUSCEPTANCE VERSUS 6 WITH

= = = = H
koa 1.0, kgb=1.1, koc 1.2, wp/w 1.5 AND v/w AS THE

PARAMETER
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from the last three figures that a) conductance versus 6 curve and sus-
ceptance versus 6 curve for the case koa = 1.0 and kob = 1.1 are neatly
checked with Eqs. (5-3-26) and (5-3-27) except wp/w = 5; b)when V/w
increases, the conductance also increases while the susceptance is practically
not affected.

In Fig. 7-4(a) and (b) we plot the terminal conductance and the terminal
susceptance against the width of coaxial region, ko(b -a), for the no plasma
sheath case, the separation angle 6 as the parameter, and koa = 1.0, One
may observe that for small ko(b -a), when 6 =OO and 180° the conductance
and the susceptance are approximately equal to G' and B' for koa = 1.0;
when 6= 900, G becomes very small while B becomes a large inductive
susceptance. If we refer back to (5-3-26) and (5-3-27), a similar result
can be observed. For a large value of ko(b - a), the conductance is small
while the susceptance approaches a positive constant, i.e., a capacitive
susceptance. Furthermore, one may note that the conductance versus
ko(b -a) curves shown in Fig. 7-4(a) are maximum when k0 (b-a) 0.4,

In Fig. 7-5(a) and (b), we plot G and B versus the plasma sheath
thickness ko(b-c) with wp/w as the parameter and koa = 1,0, kob = 1.1,
6 = 00, vfw = 0. In Fig. 7-6(a) and (b), we repeat the last figure except
for v/w = 0.1, From the last two figures one may observe that: a) When
up/w = 0,5, the conductance and the susceptance are weakly dependent on
the sheath thickness for the cases v/w=0 and ¥ /w = 0.1, Galejs (1964) in
a paper on the admittance of a slot in a perfectly conducting plate covered with
a plasma sheath showed that the slot conductance and susceptance are practically
independent of the thickness of the plasma sheath when wp/w <1, His numerical
results are not accuraie for a thin sheath, b) When wp/w = 1.5 and the sheath
thickness ko(c ~-b) exceeds 1.5, further increasing the sheath thickness will
decrease the conductance exponentially for v/w=0, but makes it approach a
constant for v/w=0.1. For ko(c -b) > 1.5 the susceptance is essentially

independent of ko(c -b) and the collision frequency. c¢) When ko(c -b)
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approaches zero, the conductance and the susceptance for all cases approach
respectively to 1,18 x 10-3 mhos and 6. 26 x 10_3 mhos, the magnitude of the
terminal conductance and the terminal susceptance for the case without plasma
sheath, We did not plot the case wp/w =1,0, V/w=0 because when the plasma
frequency is equal to the radio frequency, the effect of the collision can not be
negiecied,

In Fig. 7-7(a) and (b), we keep kob/koa = 1.1 and have no plasma
sheath, G and B are plotted against koa with 6 as the parameter., The
primary purpose of this figure is to show the effect of the radio frequency on

G and B for a constant cylinder radius a. We note that as k_a increases,

0

the conductance peaks at k.a =0.43, 1.3, 2.2, 3.13, etc. The susceptance

0
peaks almost at the same values of k. .a as G.

In Fig. 7-8(a) and (b), we plot G al(l)d B as function of wp/w with
v/w as the parameter . The values of koa, kob and koc are chosen as
1, 1.1, and 1.3, respectively. One notes that for large values of wp/w,
G decreases exponentially with further increasing of wp /w when v/w=0
and approaches to a constant value when v /w # 0. The susceptance, ou the
other hand, for large wp Jw, is approximately a straight line with a negative
slope. The effect of y/w is to shift the straight line upward. The suscep-
tance in this region of wp/w is inductive. In Fig. 7-8(a) we plotted G versus
wp/w for the cases v /w=0, 0.1, and 0.5 and in Fig. 7-8(b), B versus
wp/w for the same parameters, Notice that v /w=0, and 0.1 curves for B

are not distinguishable on the graph.

3. Conclusion:

The antenna problem encountered in this report is basically a boundary
value problem, To attack such a problem, we first express the electro-
magnetic fields in the wedge region, the coaxial region, the plasma sheath
and the free space in a series whose coefficients are in terms of the @-

directed electric field, £ (§) and E (f), in the wedge aperture and the
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shell slot, respectively. Then upon applying the boundary conditions, we
formulate two coupled integral equations in which £(¢) and E(@) are the
unknown functions. Both integral equations are of the first kind of the
Fredholm type if one of the slots fields is assumed known. Only in one,
however, the magnetic current source is present. This we will call the
inhomogeneous equation; the other one — the homogeneous equation, for the
purpose of present discussion. Thus the boundary value problem is reduced to
the problem of solving these two coupled integral equations. However, for
practical purposes, we may regard the wedge region as a transmission line
loaded at the cylinder surface by a terminal admittance. The knowledge of
the terminal admittance is fundamentally importancin s tudying the behavior of
an antenna. For this purpose, from the inhomogeneous integral equation,
we formulated two different expressions for the terminal admittance. On
the assumption that the solution of the homogeneous integral equation
mentioned above is obtainable, one of the above two expressions for the
terminal admittance i1s proved to be stationary with respect to the

functional variation of £ (). An analytical solution of the homogeneous
integral equation in a series form has been found for the low frequency
region, This solution depends on the radii koa, kob, koc : wp/u, v/iw,
and the angular width of the shell slot 2¢0 . For narrow shell slot, the
series which represents the solution converges rapidly. The other form

of the terminal admittance of the wedge waveguide is not found stationary
with respect to the functioml variation of £ (¢). However, this new form of
the terminal admittance gives us some physical insight about the antenna via
an equivalent circuit,

When the angular width of the wedge aperture and shell slot are very
narrow, from the stationary form of the terminal admittance, we obtained
an explicit expression for the terminal admittance. Based on this explicit
form, in some special cases, we were able to discuss the behavior of the

terminal admittance theoretically. From the above discussions and the
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numerical results presented in the preceeding section of this chapter we
may briefly conclude:

a) The slotted circular shell functions as a tuning element and a
matching transformer. Therefore a suitable choice of the width of the
coaxial region and the slot separation angle 6 will result in more power
radiaied inio the free space than by the wedge cylinder alone.

b) The frequency response of the conductance and susceptance of
the coaxial antenna peak repeatedly at different frequencies, with narrow
bandwidth in comparison with the wedge cylinder,

c) When wp/w <1, the plasma sheath thickness ko(c -b) has little
effect on the conductance and susceptance. When wp /w>1, and plasma
collisions are neglected, for large sheath thickness, the conductance
decreases exponentially while the susceptance approaches to a constant
which depends on the ratio wp Jw. If the collisions are not negligible, we
observe that the behavior of the susceptance is not changed but the con-
ductance approaches to a constant depending upon v/w.

d) For a fixed operating frequency and plasma sheath thickness,
when wp/w< 1, the collision term v/w has little effect on the susceptance,
but increases the magnitude of the conductance. For large wp/w, further
increasing the plasma density will have the same effect on the conductance
as the increasing of plasma sheath thickness, but will make the terminal
susceptance decreases continuously to the case of unslotted conducting
shell,




APPENDIX
A-1

PROOF OF THE STATIONARY PROPERTY OF y(a)

To start the proof we take the first variation of Eq. (2-4-4); the

result is
9+90A 6+6 +@0A
5y (a) [& E(¢)d¢:l +2y(a)g 6E(¢)d¢g £ (¢1) agr
6-6, 6-4 6-6
J (k.a)
nr 0
o 6+, e+eo
=142 T 2 g 6E(¢)cos Z(@- 6+6)d¢g E(¢')cos (¢’ )d¢'
n=lior T0 <o-g “o b-4
28, 0 0
6+8 o+
20 0 J (k.a)N'(k.b)-J'(k b)N(K .a) 0 %
0 n0 no n0 ' no ] N ke
T 4y 0Tk BIN' (k a)- 37k BN’ (k b)g dps ﬁ(¢)S B(@cosu(p-9) g
n= n0 no nO0O" " n O
9-90 6-9
0
6+6
26 ®
0 2 (1) ' '
“T T 2 [g d¢ﬁ¢g 5 E(@") cos n (g -¢") af
-8
9+90 ) ¢o
+S dgs E(¢)g E(¢')cosn(¢-¢‘)d¢'] . (A-1-1)
b-6 4,

From integral Eq. (2-3-31) one can show that
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s B2 ) % %
T Vi X d¢ﬁ(¢)g 6 E (§) cosn(g-¢')dg'
0 n= 9-8 _¢
0 0
0+ 9 ¢
6 0 0
2 n
-2 25O\ T wit@( reicessgpar . wa
(1} n=0 0-0 5_¢
0 0

Upon applying (A-1-2) to (A-1-1) and moving the second term on the left hand
side of (A-1-1) to the right hand side it is seen from (2-4-3) that the\ right

hand side is zero, 1i.e.
dy(a) = 0

One thus concludes that a first variation in the aperture field of the wedge

gives a second variation of the terminal admittance of the wedge waveguide.



APPENDIX
A-2

SOLUTION OF INTEGRAL EQS. (3-3-2) and (3-3-3)

In this appendix, we will employ the Schwinger transformation (Lewin,
1951) and use the trigonometric series (Schmeidler, 1955) to solve integral
Eqs. (3-3-2) and (3-3-3).

Since
< cos n@ cos nd' 1
- = -5l 2|cos¢' - cos¢| (A-2-1)
n=1

(3-3-2) and (3-3-3) become, respectively,

%
- % S Fge)(w)tnz'cos g —cos¢| dag
-¢0

€ I"(e)cos n@
} 1 ) : "(k.b) [T )N'(k D) (A-2-2)
ﬂ(1+E2)(k0b) n= Jn( 0 Nn(koa)_Jn(kOa n o

and

¢0
- % S f:le)(¢)1n 2|cos¢' -cos¢ld¢'

_¢0

=-—--—-—-——~—~_21 cosnf . (A-2-3)

(1+k )(kob)
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We then introduce a transformation due to Schwinger, i.e.,

g 9
cos@ = cosz-é-o— + einz-z—(-)cos s . (A-2-4)

It is obvious that one may map the region -¢0 <@< ¢0 into the region

-m < 8 < a with the transformation (A-2-4) but not in one to one

correspondence. Thus we further introduce the restrictions
-7 < 8 < 0 corresponding to —¢0 <@g<o

0 <s <7 correspondingto 0 < @ < ¢O

to the transformation (A-2-4), In this report, whenever the Schwinger
transformation is mentioned, these two restrictions as well as (A-2-4) are
implied.

Upon applying the Schwinger transformation to (A-2-2) and (A-2-3),

one obtains

g

) 4 ®
0N =(e) dQ' =(e) dQ' cos ms cos mt
Incsc 3 S FO (t) at dt +g FO (t) it m2=1——T dt

- -

) ¢
(e) -1 270 .27
® enr‘n cosincos (cos 5 + sin 5 coss )

]
(14K ) (kob)z n; TnllgbIN (kja) - (kcya)N' (k b)

(A-2-5)

and

/

¢ 4 T, : ©
0 «e), , do' =(e),., d cos ms cos mt
Incsc 5 Sl_ﬂ fne (t) % dt +S_1rfn (t) —d% E dt

m=1 m

] )
= - _+_ . cos[ncos 1(coszTO- + sinZTOcoss )] {A-2-6)
2(1+k 2)k0b
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where
Foke) = 5 [pee)]
f:le)(s) = ffle) [¢(s)]

for —¢0<¢<¢0 and -7 < g <«
The free terms of Eqs. (A-2-5) and (A-2-6), respectively, can be

expanded into Fourier series; thus,

w € [ (e)cos mcos_l(cos ‘—52- + sinzg-o—coss) ®
L. 2 2 = a(e)cosps
| t -1 1
£=0  TmKoPNko?) I kgaIN'y, (kgb p=0 P
. ) )
cos|ncos (cosz 9. slnz—g cosg)| = b(e) cosps
2 2 — - Np
p—
with
(e)
&) = 1 % ‘" 'm Xom
1 1 R ‘
0 2r & J' (kBN (koa) Jm(koaiN'm(kob)
[00) r(e)x
a(e) = 2 Z m” pm
\ -1 1
P T At J 'm(kob)Nm(koa) J m(koxa.)Nm(kob)
(e) _
bnO " 21 “On
ple) o 1y
np pn

(A-2-7)

(A-2-8)

(A-2-11)

(A-2-12)

(A-2-13)

(A-2-14)
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where

T
X = cOosps cos mcos—l(coszf-q + sin2 -¢—0cos s)ld (A-2-15)
pm P 3 ) 8

-T

The properiies of Xpm will be investigated in A-4, however for the present

discussion, we note that

Xpm=0 for p>m . (A-2-186)
If we let
2le) 48" _ (o), 5= ()
© (t)_% = aoe + ape cospt (A-2-17)
p=1
(e)(t)i (e) i t(e)cospt , (A-2-18)
p=1 ™

for -1 <t<7w ;

upon substituting (A-2-9), (A-2-10), (A-2-17) and (A-2-18) in (A-2-5) and
(A-2-6), respectively, and employing the expressions (A-2-11) through (A-2-14),
we obtain

(e)
a(e)= 1 1 i ‘m' m XOm
0 T2 2 o 8, JT TN’ (k) -37 (k alN' (k b) ’
TALTK J\WK, 0 & v m
0 4T Incsc-i-

m=0

(A-2-19)
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(e)

(e)_ 1 2 & Mm Xpm

a o ] ] -1 ] ’ (A—2—20)
P r(+k )(k )2 7 Zp I K gPIN (kpa) -3 ) (kg@IN] (kcob)

X
Bn(g)z -— On — - (A-2-21)
2(1+k "Nk b) 41r21ncsc—§
1
Bfle; = - Ex . (A-2-22)

2(1+E2)(k0b) 2~ PB

If one differentiates the Schwinger transformation with respectto ¢ ,

one has
dt 'Vf'cos%
) -¢O <f@< ¢0 . (A-2-23)

) Yeos @ - cos ¢0 |

Thus from (A-2-7) and (A-2-17), we obtain

(), 4 _
Fy @) =

ﬁcos-g— {

) (e), (e) [ -1 2¢0 2 ¢0]}
o ’'cos|pcos (csc —-cosf@-cot” =) ,
Yeos § - cos ¢0 0 Z P 2 2

Po<B<9, . (A-2-24)

and from (A-2-8) and (A-2-18),

N2'cos ¢ n ¢ ¢
t’fle) (@) = 2 {9(%)+ Z B (e) cos[p cogl(csc2 -—29 cos @ - cot? —29)]} )
%os¢-cos¢o ® 1 ®

By <P<Py » v=0,1,2...N, (A-2-25)
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If one defines

(e)
ste) . i “m'm Xom , (A-2-26)
0 =9 ;n(kob)N;n(koa)—J ;n(koa)N;n(kOb)
(o)
s ., i Mm Xpm (A-2-27)
P mep ° akgoIN, (kja)-J' (kja)N. (kb)
th (e) (e)
en Fo (@) and f (#) becomes
'] gle) (e)
cos pS
Ff)e)(¢) i :Vg : 2 0 — i :
m(l+k )(kob) 'Vcos¢-cos¢0 47r21ncscz—o p=1 =
- U/ ¢
. cos[p cos 1(0802 -QQcos¢-cot2 -EQ)] )
_¢0 <g< ¢0 (A-2-29)
V—- cos*a— X n pX
f(e)(¢) - 2 2 5 On N gn
n 2(1+'1-<2)(k0b)’ﬁos¢-cos ¢0 4n Incsc% p=1l =
- ) ¢
. cosl-pcos 1(cscz—zgcos¢-cot2 —22)] ,
L

)

F,<9<9, - (A-2-29)



APPENDIX
A-3

SOLUTION OF INTEGRAL EQ. (3-4-5) and (3-4-6)

Same as in A-2 we employ the Schwinger transformation and the
trigonometrical series method to solve integral Eqs. (3-4-5) and (3-4-6).

If we differentiate the well known formula (A-2-1) with respect to ¢
for all ¢, ¢' < ¢0 except ¢ = @', we have

Q0

Z sinm@ cos mff' = —;— sin . (A-3-1)

- cos @' - cos
m=1

Upon substituting (A-3-1) into (3-4-5) and (3-4-6), one obtains, respectively,

. )

¢ (0) 41y qa
0 1 o (949 - 1 m sin mg
] 2 cos@-cosf Q1 +l:2)(k0b)2 m; J;n(kob)N;n(koa)-J ;n(koa)N;n(kob) sing

0

(A-3-2)
and
¢ (0)egry gait
0 _1- fn (¢ )d¢ . 1 sinn¢ n=1.2 N (A—3-3)
2 cos a'-cosa -2 sing °’ 22,... .
(1+k "Xk _.b)
-¢ 0
0
Since
sinn <
m} = 2 Zi cos mf) for n even
m=1,3,5...
n-1
= Z €, S8 m@ for n odd , (A-3-4)
m=0,2,4,..
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the free term of (A-3-2) can be written as

3 r"i?) sin ng o0 ( )
! ' -J' 1 = € L cos A-3-5
mZ=; m(kob)Nm(koa) Jm(koa)Nm(kob) sin @ %
where
)
- (1) (1) N
LP ) Ig;lvp+2m-1 r'p+2m-1 ’ (A-3-6)

(1) 1

v 1 0 7 0 (A-3-7)
n J n(1~101:>)Nu(l<:0a) -J n(kOa)Nn(kOb)
Upon substituting (A-3-5) in (A-3-2) and (A-3-4) in (A-3-3), we have
= - = - — € L cospf ; (A-3-8
] 2 cos @' -cos @ 7r(1_*1‘{2)0{01))2 pA;'é PP
0
%o, 1 Dgnag \ a-1 ¢
= — e — cosp@, n=even ,
‘[¢ 2 cosa cosa (1+k2)(kob)p=1§5...
0
1 n-1
e —_—— D €,cospf , nm=odd . (A-3-9)

(1+f<‘2)(kﬁb) p=0,2.4...

We apply Schwinger's transformation (A-2-4) to (A-3-8) and (A-3-9) andlet

=(0)., = (0
F:) ey = Ff))[¢(t)] (A-3-10)
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£ =1 [d(t)] (A-3-11)

for —¢0 < @< ¢0 and -7 < t < 7, and obtain respectively

% ‘°’(t>—¢—dt | e 4
1 - 1 270 20
2 o -2 ZZE L _cogpcos (cos -§-+sin — cos s)
m(1+k "}k .b) " p=0 PP
¢0 sin —(cost coss) 0
(A-3-12)
{0) 40
% £ % g n-1 e
1 n - 2 1, 2% . . 2%
2 a 2) % codpcos (cos -§-+ 81n-2—coss)
-4 sin-2(cos t-cos s ) (1+k (kgb) p=1,3,
0 2
n =even |,
o1 LS a, 2% 2%
=- g ; epcos cos “(cos - *sin Tcoss) s
(1+k )(kob) p=0,2,
n =odd . (A-3-13)

In order to generate convenient expansions we multiply both sides of the
last three integral equations by sins. The free terms of these new integral

equations can be expanded by Fourier series, i.e.,

n-1 ¢ @ 03)

z € L cogpcos 1(0082_Q+ sin2—0 coss;J sins = E a (O)Sinms (A-3-14)

-~ P P 2 2 — M
p=0 m=1

o @ ) ®

2cos[p cos 1(c:os¢2~(—)+ sinz-gcoss)]sins = Z b(o)sin ms ,

_ 2 2 nm

pP= 10 3: m=

n = even , (A-3-15)
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n-1 1 1] o0
-1, 27 270 L (0)
; epcos[pcos (cos -2—+sin 3 cos s)]sms = Z b “sinms ,

p: Fl FALE N m=1 nm
n = odd . (A-3-16)
Since
T
-1 2 ¢0 2 ¢0
sinmssinscos[pcos (cos -§-+ sin 7coss)ds
-
21
_2<Xm—1,p m+1,p)
we obtain
(0.0)
0 1 f_—: .
a e €L X -2 D> L X ), (A-3-17)
m 2w pim-1 PP m-1,p pamti P m+l,p
(0) 1 n-1 n-1

€ X -2 Z X ) , n=odd, (A-3-18)
nm 2 p=0’2’4’”.p m-1,p p=o “..m+1,p

o 1 %
b = = (X -X ) , n=even . (A-3-19)
nm T _ m-1,p m+1,p
p= 1:39 ca e
We note that bg =0 when m>n. Because

gsin 8
2{cpst-coss)

sinmscosmt ,

tliy;

(A-3-12) and (A-3-13) become
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2%
in — Q0
0),,, d 8
g ( )(t) ¢ Zsinms cosmt dt = = 2 5 Za(o)sinms, (A-3-20)
- m=1 n(1+k Jkyb)” m=1 "
Y (00) sinz?i) n
- ]
f(o)(t)iﬁ— Z: sinms cos mtdt = —_2% b(o) sinms ,
n dt 4= -2 nm
m=1 (1+k )(k.b) m=1
g 0
n=1,2,... N , (A-3-21)
Now we let
(t)—ﬂ- C + C1 cost + 02 cos 2t + , , (A-3-22)
(0)(,‘)2[ d + d 1 €08 t + dn2 cos2t+ ... . (A-3-23)

Upon substituting (A-3-22) and (A-3-23) in (A-3-20) and (A-3-21), the Fourier

coefficients C and d are found as
m nm

2¢o (0)
sin 5 am
Cm = - -2 2 - (A-3'24)

m(1+k )(kob)

¢
270
sin” —=-
2L - 2 b(o)

ﬂ(1+m2)(k0b) am

, m>1 . (A-3-25)
nm =
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Hence
sin2-¢-9 a(o)
]
FgO)(t) %;L = Co - =5 2 5 -2 cos mt ,
r(l+k )(kob) m=1
-r<t<n7 (A-3-26)
sin 2 ¢O
L}
f:lo)(t)gt‘d— =d 0 Z b( ) cosmt |,
20 a+k Kk o) m=
-r<t< 7w, (A-3-27)
We recall that
. - 2 ¢0 2 ¢0
cos@' = cos — tsin” —-cost
and therefore
¢
Eﬂ sin2 -2-Q sint
dt = p ") 2
Vl - (cos 3-0+ sin -zgcost)
It is obhvious

t
%;L—>o as t —>3% g
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Therefore,
70 9 )
0 dt

r —> 0 as t%iw

-(0),., dg'
fo(t)jd%-

/

and hence from (A-3-26) and (A-3-27), respectively, we have

sin2 —¢9 Q
C0 = —— 2 3 z ar(x?) cos m7m |, (A-3-28)
7 (1+k )(kob) m=1
2 ¢0
sin - n (0)
do = 53 :bnmcos mr . (A-3-29)
7 (1+k") kob m=
Thus F(o)(t) and f(o)(t) are
0 n
sin2-¢£ 00
fgo)(t) = - 2 3 gg, Zar(!?) (cos m7 - cos mt) ,
7 (1+k )(kob) m=1
-Tt<t<nm , (A-3-30)
sinzgq
ff10)(t) = 2 dt b(?li (cos mm - cos mt) ,

—-— ]
(14K %) kob E’rm=1 n

-t <t<nr . (A-3-31)
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For the convenience of further investigation we introduce a new function

m-1
ﬁm(t) . gosmm-cosmt _ % ep(-l)m p(m—p)cospt . (A-3-32)
p -

1+ cost

If we let Um(¢) denote the function U_(t) in @ interval, then

m-1 ¢ ¢
U (@)= Z e (-1)™ -p(m—p)cos[pcos-l(cscz —Qcos g - cot2 —9)] (A-3-33)
m o= ) 2 2

Thus Eqgs. (A-3-30) and (A-3-31) become

—(0) stfZg dt = (0) —
F, (1) = n2(1+i?2)(k0b)2 3 (L+cost) mZ=1am T_® .

r<t<T (A-3-34)
and
-(0) szj’;g dt L (0) —
£ = m@;(ncost);bnmum(t) ,

-Tr<t<aw . (A-3-35)

From the Schwinger's transformation, we obtain

2¢0

dt - ¢ - 1 o
sin 3 3 (1+cost) = 2 cos ’5V°°S¢ cos ¢O (A-3-36)




116

Therefore,

F:)O)(¢) 'V—' . cos(¢ Weos @ - cos ¢0 Z Um(¢) )

(1+k 2 (rk b)

4, <8 <9, (A-3-37)

0 )“ 1
( )(¢) = —!? co(% OS¢ - Cco8 ¢0 ke fl?':l Um(¢) ’

(1+k ") (rk ,b)

B <P <P . (A-3-38)




APPENDIX
A-4

PROPERTIES OF qu

In Eq. (3-3-8). we put

2 ¢0 2 ¢0
coss=x , cos - =b and sin - =8 (A-4-1)
then X  becomes
qp
! 1) cos [poos ™
X = zg cos(qcos ~x) cos|pcos (b+axiL dx (A-4-2)
P 2
-1 1-x
Tchebychev polynomial is defined as
-1
T (x) = cos|qcos ,
0 = cos scon”)s]
Tox) = 1,
therefore one may rewrite (A-4-2) in the form
1
T (x)T (b+ax)
X = 1 __P dx . (A-4-3)
® 2
-1 1-x
It is obvious that for any ¢ 0
X =27 . (A-4-4)

00

Tp(b+ ax) is a p-th order polynomial of (b+ax), while Tm(x) is

a m-th order polynomial of x, therefore
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Tp(b+ax) = mtbame(x)

If we multiply both sides of that equation with 2Tq (x) / v1 -x2 , and
integrate from x=-1 to x=1, we find

1
T x)T (x)
X =zﬁa§ T g™
@  fmpm

-1 1-x

But

1 7 ®T x)&
m 1 = T %‘, m=q+0.

.7 m=q=0 .,

and therefore we conclude that for any ¢0

X =01if q> . (A-4-5)
- q>p

DuHamel (1953), Salzer (1956), Brown (1957) and others in their works
on radiation pattern of antenna arrays also studied integral (A-4-3). By different

approaches, they carried out the integration and arrived at a tedious formula

n/2.
- n q 1 rf_ qton-r q+n-r-1
€4Xq, qtn - 27(P) 8 iﬁ {('—i) [2( r 070 )]

4b

0/2-r - _ 2
o e )
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1
where (1) denotes the binomial coeffictent ___'_q__ » and [y] denotes
r r! (q-r)!
the largest integer not exceeding y. For the counvenience of further discussion,
we list X for n=0 to n=4:
, qtn
€ X = 27a R
q q,4q
- q
quq, q+1 2n(q+1)a"(2b) ,
- afe gl o2, 2]
eqxq’q_‘_z 2n(q+2)a [( o7 (2b)"-1)+a"| ,
i} q a+2,,.,2 2]
€ Xq, qrs " 2rlardaleban (AEen’ - D+ @raa’]
- q [(q+1)(q+2)(q+3) _ {q+ 1)(q+2)] 4
€qu’ q+4 2n(q+4)a { Y, 37 (2b)” ,
+[__(q+ 22)$q+ ) _ g+ 2)] a®(2p)”+ 22 a4} . (A-4-17)

For n—> o, one may evaluate the integral (A-4-2) by the method of

stationary phase:
Jox
cos (n¢o+ q¢0 -7
X X 27cosqm . (A-4-8)
q, q+n ¢
0

27 ntan —2—'

Combining the informations given by (A-4-7) and (A-4-8), we may state the

following behavior of X q +q- Forany q # 0, as n increases from 0,
?
Xq q+n increases gradually from =« al to its first maximum and then
2

repeatedly swings from negative maximum to positive maximum with a

decreasing amplitude. For q=0, as n increases from 0, XOn decreases
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gradually from 27 to a negative maximum, then swings up and down with a
gradually reducing amplitude. In the case q# 0, suppose the first maximum

of occurs at n=M, then it i{s seen that the increasing of q reduces

X
q,q+n
the value of X q as well as increases the value of M,

Now we consider the special case of narrow slot. The necessary p

values for the narrow slot satisfy the condition p¢02 <<1, Kin

_ [p/2 ow_i[ P-T  p-r-1 9
cos[p cos lz] =Z ; (-1)F 2P 2r 1[2( . ) - ( r )]zp r (A-4-9)
r=
2 ¢0 2¢0
we replace z by cos —2—+ sin 5 cost and make use of
2
) ¢ } @
(cosz—-29+ sin2 —29008 t)p o 1-% (p-2r) (1 -cost) (A-4-10)
we have
-1 2¢0 2 ¢0
cogpcos ~(cos —é—+ sin —2—cost)
~ 2]( 1)1'2p—2r—1[2(p-r) _ (p-r—l)]
- B r r
r:
2 2
¢0 ¢0
- — &)+ —Z—g(p)cost (A-4-11)

where

[P 2] p-r p-r-1
g(p)=$(-1)rzp'2r‘1[2( -0 )}- (p-21) . (A-4-12)

r
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We note that g(p) <p. Upon substituting (A-4-11) in (A-4-2) and employing
the identity

|3£(_1)r2p-zr-1[2(p;r)_(P':'l)] =1,

we attain
2
xOp = 27|l - — g(p) ’ (A-4-13)
2
¢0

le =T glp) , (A-4-14)
and
X = 0 > 2 . A-4-15

- q 2 ( )

There is an alternate approach to find X_ for ¢0 < <1, From Schwinger's

Op

transformation, for q=0 we may rewrite (A-4-2) as

2

g¢0 2 cosﬁcosp¢

X, = dg
Op ¢ Ycos @-cos ¢0
0
¢ Vv A
~ 9 S —cospf 49 - 273 (pB,) (A-4-16)
2
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If the angular width of the shell slot is very wide, we may let ¢0 =r-A,

where A is much smaller than unity, then we obtain

coszgg-f sinzg—cost = sinzé + Z—A— os t
> ) 5 cos 5 cos
Now we let
2 A 2 A
b = sin 5 s a = cos 7

Salzer (1956) showed that

[(p-q)/2] B} B} ,
T (ax+b)=i { z; (-1)F 2P 2T LI I G h]
P q=0 r=

[p-q)/2)-r .
. q+2j, p-2r, a.q+2j p-q-2r-2j
%: ( j )( ) (5) b }

q-2j
- T (x) . (A-4-17)
q
Iif pA2 << 1, (A-4-17) can be reduced to
1E>A2
T (ax+b)=~ T (x)+~—T x) . (A-4-18)
J(ax+p) = T )+ BT ()
Therefore
X a4 0
_ s PF
2
~ (1A
Xp,pr1 2 "

and

Xp,p+n_0 , for n> 2




APPENDIX
A-5
(0)

INTEGRATION OF A (0)
mn

AND B
m

Using the Schwinger transformation we obtain irom (3-4-15) and {3-4-18),

respectively,

T
4 28 %
A::!::S‘ m'rmcos[mcos (cos -§Q+sm2_2_005t)] (t) ¢ dt (A-5-1)

-

and

m
a4, 2% 2! '
BI(:)=§ m7 cos[mcos 1(cosz—f—hsin2 0 ost)] go)(t)—da%dt . (A-5-2)

-

Upon substituting (A-3-34) and (A-3-35) in (A-5-1) and (A-5-2), we have,

respectively
m'r sinzzg n
1(3 = 2 (0) (cosp1rX0m -X ) (A-5-3)
(1+% )1rk b p= P
(0) m'rmsinzgﬂ Q0 (0)
Bm z —— 7-' p (cospwx -Xpm) . (A-5-4)

(1+T<‘)7rkob 5=1
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A-6

DIFFERENTIATION OF W (@)

Since

& d[ ¢ ; ] 1 (Zcos¢+1-cos¢0)sin%¢
2 cos ‘Vco -cos@ [=-—
@ 2 e ¢0 A Vcos¢-cos¢0

(A-6-1)
we find from (3-4-13)

dw (@) 1 (Zcos¢+1-cos¢0)sin-1§¢

(1+k )(1rk b) T S
‘Vcos¢-cos¢0

: { ar(:) U_(@)+ 7k b : 0 Z b(O) Um(¢)}

U (@) du_ (@)
+’V—'cos-g-Vcos¢ cos {Z (O) ¢+ kao(o)Zb(o) ’ } .

(A-6-2)
But
dUm(¢) dUm(t) dt
= , (A-6-3)
ag at  dg
and
dUm(t) _ _sint [msin mt cos m7 - CO8 mt] ) (A-6-4)
dt l+cost sint 1+cos t
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If we define
sinmt
Vot = ——=— -r<t<w ,
m-1
=1+2Z cospt , m=odd , .
p=l
m-1
= 2 Z cospt , m = even (A-6-5)
p=1
and
m-1 _ @ )
Vm(¢) =142 E cosp[cos 1(cscz ?ocos¢ - cot2 —29)] , m=odd ,
p =
m-1 1) ¢
=2 pZ=1 cos p[cos 1(csc2 -2—0 cosf - cotz —29)] , m = even ,
(A-6-6)
then we have
dU_(t)
m _ sint = =
dt = 1+cost [me(t)j Um(t)] . (A-6-7)
From the Schwinger's transformation, one can show that
dat _ 1 sin @
® ~ T st (4-6-8)
s‘“z—Q
Al 2

Thus it is seen from (A-6-3), (A-6-7) and (A-6-8) that

dUm(¢) _ sin@

df  ~ cos@ - cos % ) [me(¢) - Um(¢)] . (A-6-9)
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Hence (A-6-2) can be written as

sin
2 2awig). i ), (0 (© ]
(1+k Nk b) (D)4 7k bz; Z:b U_($)
o VEos ¢ - cos @ { OL o m

=) L o< (0
+ (1+cos¢){z:mam V_(@)+rkbD o Zmbnmvm(yi)” .
m=1 n=1 m=1

P <9 <g, . (A-6-10)
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PROPERTIES OF THE INTEGRALS (4-3-6) TO (4-3-9)

¥ welet x=n/ 90 then from (4-3-6) to (4-3-9) we obtain, respectively,

1 1
ple) . g 3| cosamxdx (A-7-1)
n 0 3 D)
-1 1-x
1 1
- 6. .x dx
) _ 3 cosn 0
Qn = 90 3 > s (A-7-2)
-1 1 -x
(0) % 1 sin 2n2-1 nr dx
Pn = 60 S 3 - R (A-7-3)
-1 1-x
4 1
- sinné@_ x
Q@ - 903S ———dx . (A-7-4)
-1 Ul - x2
It is well known that
1 1 1
Zv-i WF(V+§) 2.V
(1-x%) coszx dx = —_— (;) Jv (z) (A-7-5)
',0

where M (v+ %) is the gamma function with v+ 1 as its argument. Therefore

2
(e) (e)

for n > 1, Pn and Qn , respectively, can be written as
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1 1
pff) - 0, NT (3 )(—) 3 ), (A-7-6)
6
1 1
Qfle) = efﬁr*(%)(%{) 6J1(n7r) ) (A-7-T7)
B

(0) (0)

It is difficult to express P and Q in terms of any classical
(0) /P(e)

functions, However, it is rather obvious that P is at least of

0(6 ) and Q(O)/Q(e) is at least of the order 002 when 60 <<1.
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SUMMATION OF THE SERIES

[0 0]
: (Qfle)/Qée))z/u AND f Joz(n¢0)/n
n= n=1

Letting n = 60 cos a we transform (4-3-8) into

no1

1

e) .3 3

Qn = 90 sin aco(neo cos a)da
0

and hence

f —1- i §ar 0 a)da
= sin co(n o €08

. g sin§B cos(nt%)0 cos B)dp
0

Upon interchanging the summation and integration, we arrive at

2 =

” 1
o 2 -
Z(Ql(le))z/n - 903§ dasin aS. sinSB .
n=1 0 0

w1

® cos(n 60 cosa)cos(n 90 cosf)

n

dB

n=1
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(A-8-2)

(A-8-3)
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But

@
Z cos(nfcosalcos (nbcosf) _ -12- £n2 cos(eocos a) - cos(OOcosB)l

n
n=1
(A-8-4)
For 90 << 1, we have
002
cos Gocosa’-‘—’ 1- -+ (1+cos2a)
(A-8-5)
902
cos 6. cosf & 1-—— (1+cos28)
0 4
and (A-8-4) becomes
o cos(nf_ cosca)cos(nb,cospB)
0 0 ~ 2 1
% fn - - = fn2|cos 28 - cos 2|
n 6 2
n= 0
- In 52_ + cos 2acos 23 (A-8-6)
0 n=1 n
Upon substituting (A-8-6) in (A-8-3) one has
® 2 T 1
). 2 3 2 3 2
Z}-(Q(e)) ~ g 3 (Z) (\ sin® o da)
n n 0 6
n=1 0
0
2, (" '13' 2
+ ;H (g sin acos2na da) . (A-8-17)
n:

0
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One can see from (A-8-1) that

1 = _1_

Qée) = 903S sin® a da (A-8-8)
0

and because the series on the right-hand side of (A-8-7) converges very

fast to 0.05053 60 , the series
0]
Z(Q(e)/Q(e))Z/n = In(Z2) + 0.0195 . (A-8-9)
n 0 6
n=1 0
Since
g
= 1 -8-
Jo(n¢0) = ;S. cos(n¢ocos 6)de , (A-8-10)
0
we have
® ® m T
2 _ 1 ’
ZJO (n¢0)/n = Z — cos(n¢ocosa/)da/Sl c \s(n¢ocosB)dB
n=1 n=1nmr 0 0

(A-8-11)
Following the same steps from (A-8-3) to (A-8-9), we obtain

J (0@ )/n & tn (- (A-8-12)
n=1 0 0 ¢0
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TERMINAL ADMITTANCE OF A WEDGE WAVEGUIDE
IN A PERFECTLY CONDUCTING CYLINDER

The geometry is as shown in Fig. A-9-1,

FIG. A-9-1: PERFECTLY CONDUCTING CYLINDER SLOTTED BY A
WEDGE.

The perfectly conducting circular cylinder bodyis of radius a. The width
of the wedge is 260 . If we put a magnetic line source at the apex of the
wedge, then the source excites EM fields in the free space (region m)

as well as inside the wedge (regionl). In Fig.1-3 if we let 6 =0,

¢O > 90 and ¢ —> b —>a, then we obtain the same geometry as shown
Fig. A-9-1. If y'(a) is the normalized wedge terminal admittance defined
by (2-1-15) where r=a, it can be shown by a similar procedure as in

chapter II that

90
J . Gka) g £(¢")cos _glr @' dg
_60 0

H
8
y'(a>=jzi o )2
= ng(koa) 90
8, g B (g*) ag’
-90
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%
g £ (§")cosng' dg'
0 o (2)(k a) Mo .
-j = - ( ) (A-9-1)
v & © ( )(k 2) % )
E(@)dg
_6‘
v

where B (¢') is the tangential electric field in the wedge aperture. This is

a stationary expression with respect to £ (@). Hence, when 6. << 1 , one

0
may let
Aw
E(g') =
0
and since
JM(koa)
6 6. k. a
0 ~ 0 0
7 ka 7 n for 90<< i, >0
o7 o
6O
Eq. (A-9-1) becomes
(2)
9 ® (k.a)
y'(a) = -—[ 5 Z(p‘e’) /n - Z} ‘(‘2), @ . a2
L 0 ) n=1 (k a)

-

If Y'(a) is the terminal admittance of a section of the wedge waveguide

of length a meters, then
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1 4 [
Y'(a) = — \[— y'(a) . (A-9-3)
29, V*o

It is strajght forward to write down the conductance G' and susceptance B'
from (A-9-3) as

(e)

€' @ € Q
G = — V“_O 2 — o )’ ., mhos (A-9-4)
n koa 0 n=0 1+xn Q, N:l(koa)
(e)
1 %o 2 1 Py
B' = —aAl— {2k a = (—=)
27 ko { 0 nz='1 n Q(()e)
< 1+xnyn Qfle) 2 Nn(kOa)
- g € 3 ( @) } , mhos (A-9-5)
n= 1+ X QO Nn(koa)
where

x = J'n (koa)/ N;) (koa)

Y, = Jn(koa)/Nn(koa)
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POYNTING'S ENERGY THEOREM IN THE PLASMA
SHEATH AND THE FREE SPACE

We consider a volume V enclosed by a surface S in which the electro-
magnetic fields are of periodic time.variation.. The Poynting's

theorem for this volume then is

-S (ExH')  ds = 4JuW - W ) + 2P (A-10-1)
S

where ? is the outward normal of S and

WH time-averaged stored magnetic energy in V

> >
= %#g H* *« H dv , (A-IO-Z)
A%
WE = time-averaged stored electric energy in V
> >
. —i—es‘ E dv , (A-10-3)
v
P = time-averaged dissipated power in V
>x >
- 3 og EX. £ dv . (A-10-4)
v
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As in the main text, we choose to consider a section of the coaxial
antenna of length a meters in z-direction and apply (A-10-1) to the plasma

sheath and free space of this section respectively; we have

T m
m Im I I II = III I *
+ - = -
2P j4w(WH WE) ag E¢ H bdg agE¢ H, cd@ ,
-7 r=b -7 r=c¢
(A-10-5)

m

T
v v IV IV_IVx* IV IV
+ - = -
2P j4w(W£{ wE) aS‘ E¢ H cd¢\ ag E¢ H rdg
- r=c¢

r—>
(A-10-6)

-

Iv
It is obvious that there is no dissipated power in the free space, thus P =0,
Furthermore, if Pr denotes the power radiated by this section of the antenna,
then

m
_a IV IV
P =3 g E¢ H, rdg

-

(A-10-7)

r—>o
Since at r = ¢, E;H = E;V and HIZII = HIZV, one may combine (A-10-5) through
(A-10-7) together and obtain

m

I m__ I v__ IV ) Im I ol
2P +J4 w(W -Wo )+ J4w(Wy -Wr )+-21>r-abS Eg H, df|. (A-10-8)

z r=b

-

Upon substituting (2-2-11) and (2-2-12) in the right hand-side of (A-10-8)

and carrying out the integration, we have

IV

+ + - + -

)
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= Hn (koc)
¢0 ) ¢0
. g AdE" (d) g E(@)cos n(@-¢')dg' . (A-10-9)
% %o

Similarly, if we substitute (2-2-18) and (2-2-19) in (A-10-7), we attain a

formula as shown,

p = 2¢ “0 2 3% ¢0 * ¢0 ' ndg
P T fr e 2w\ WEW\ E@kosug-prag
0 0 n=0 A A _¢ _¢
nn 0 0
(A-10-10)
where
= k (0)' ! 1
a, = kH 7 (ko) [Jn(klc)Nn(klb)-Jn(klb)Nn(klc)]
(O) ] ] ] 1 - -
- H (koc)[Jn(klc)Nn(klb)-Jn(klb)Nn(klc)] ; (A-10-11)

For no plasma sheath case, we let ¢ —> b , k =1 and obtain straight forwardly
from (A-10-10) that

amfSo . 2 @® € 0% “4 a¢0 g
p_ = 290, )2 : ' dgE (\ E(§')cosa(@-¢')d¢’
r 4:Vu0 7rk0b) n___oE{flz) (kob)‘ 2 5_@ 5-{’
Y0 0

(A-10-12)
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